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1
VIEW MAINTENANCE RULES FOR AN
UPDATE PIPELINE OF AN
OBJECT-RELATIONAL MAPPING (ORM)
PLATFORM

BACKGROUND

Bridging applications and databases is a longstanding
problem. In 1996, Carey and DeWitt outlined why many
technologies, including object-oriented databases and per-
sistent programming languages, did not gain wide accep-
tance due to limitations in query and update processing,
transaction throughput, and scalability. They speculated that
object-relational (O/R) databases would dominate in 2006.
Indeed, DB2® and Oracle® database systems include a
built-in object layer that uses a hardwired O/R mapping on
top of a conventional relational engine. However, the O/R
features offered by these systems appear to be rarely used for
storing enterprise data, with the exception of multimedia and
spatial data types. Among the reasons are data and vendor
independence, the cost of migrating legacy databases, scale-
out difficulties when business logic runs inside the database
instead of the middle tier, and insufficient integration with
programming languages.

Since mid 1990’s, client-side data mapping layers have
gained popularity, fueled by the growth of Internet applica-
tions. A core function of such a layer is to provide an
updatable view that exposes a data model closely aligned
with the application’s data model, driven by an explicit
mapping. Many commercial products and open source proj-
ects have emerged to offer these capabilities. Virtually every
enterprise framework provides a client-side persistence
layer (e.g., EJB in J2EE). Most packaged business applica-
tions, such as ERP and CRM applications, incorporate
proprietary data access interfaces (e.g., BAPI in SAP R/3)

One widely used open source Object-Relational Mapping
(ORM) framework for Java® is Hibernate®. It supports a
number of inheritance mapping scenarios, optimistic con-
currency control, and comprehensive object services. The
latest release of Hibernate conforms to the EJB 3.0 standard,
which includes the Java Persistence Query Language. On
the commercial side, popular ORMs include Oracle
TopLink® and LLBLGen®. The latter runs on the .NET
platform. These and other ORMs are tightly coupled with
the object models of their target programming languages.

BEA® recently introduced a new middleware product
called the Aqual.ogic Data Services Platform® (ALDSP). It
uses XML Schema for modeling application data. The XML
data is assembled using XQuery from databases and web
services. ALDSP’s runtime supports queries over multiple
data sources and performs client-side query optimization.
The updates are performed as view updates on XQuery
views. If an update does not have a unique translation, the
developer needs to override the update logic using impera-
tive code. ALDSP’s programming surface is based on ser-
vice data objects (SDO).

Today’s client-side mapping layers offer widely varying
degrees of capability, robustness, and total cost of owner-
ship. Typically, the mapping between the application and
database artifacts used by ORMs has vague semantics and
drives case-by-case reasoning. A scenario-driven implemen-
tation limits the range of supported mappings and often
yields a fragile runtime that is difficult to extend. Few data
access solutions leverage data transformation techniques
developed by the database community, and often rely on ad
hoc solutions for query and update translation.
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Database research has contributed many powerful tech-
niques that can be leveraged for building persistence layers.
And yet, there are significant gaps. Among the most critical
ones is supporting updates through mappings. Compared to
queries, updates are far more difficult to deal with as they
need to preserve data consistency across mappings, may
trigger business rules, and so on. Updates through database
views are intrinsically hard: even for very simple views
finding a unique update translation is rarely possible. As a
consequence, commercial database systems and data access
products offer very limited support for updatable views.
Recently, researchers turned to alternative approaches, such
as bidirectional transformations.

Traditionally, conceptual modeling has been limited to
database and application design, reverse-engineering, and
schema translation. Many design tools use UML. Only very
recently conceptual modeling started penetrating industry-
strength data mapping solutions. For example, the concept
of entities and relationships surfaces both in ALDSP and
EJB 3.0. ALDSP overlays E-R-style relationships on top of
complex-typed XML data, while EJB 3.0 allows specifying
relationships between objects using class annotations.

Schema mapping techniques are used in many data inte-
gration products, such as Microsoft® BizTalk Server®,
IBM® Rational Data Architect®, and ETL® tools. These
products allow developers to design data transformations or
compile them from mappings to translate e-commerce mes-
sages or load data warehouses.

SUMMARY

A system, method, and computer readable media are
provided for a database update pipeline. In one embodiment,
the update pipeline is incorporated into a data access archi-
tecture for providing data services to applications, thereby
bridging the gap between application data and data as
persisted in databases. The update pipeline has the ability to
translate changes made to object instances into data store
change constructs, and carry those changes over to a data
store. Such a pipeline can also advantageously perform the
reverse operation, allowing applications to query using the
database update pipeline, and receive materialized object
instances. The update pipeline may comprise a variety of
components, e.g., a change list generation component, an
extraction component, a grouping component, a propagation
component, an ordering component, and a completion com-
ponent. In one embodiment, view maintenance rules are
leveraged in the update pipeline. The rules may be tailored
for a plurality of optimization levels. Further aspects and
embodiments of the invention are illustrated in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods for a database update pipeline
in accordance with the present invention are further
described with reference to the accompanying drawings in
which:

FIG. 1 illustrates an architecture of an exemplary Entity
Framework as contemplated herein.

FIG. 2 illustrates an exemplary relational schema.

FIG. 3 illustrates an exemplary Entity Data Model (EDM)
schema.

FIG. 4 illustrates a mapping between and entity schema
(left) and a database schema (right).

FIG. 5 illustrates mapping is represented in terms of
queries on the entity schema and the relational schema.
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FIG. 6 illustrates bidirectional views—the query and
update views—generated by the mapping compiler for the
mapping in FIG. 5.

FIG. 7 illustrates a process for leveraging materialized
view maintenance algorithms to propagate updates through
bidirectional views.

FIG. 8 illustrates a mapping designer user interface.

FIG. 9 illustrates an exemplary update pipeline configu-
ration according to an embodiment of the invention.

FIG. 10 illustrates subdivision of an update mapping view
into separate relational components.

FIG. 11 illustrates subdivision of an update mapping view
into multiple non-relational components.

FIG. 12 illustrates one exemplary embodiment of an
update pipeline as described herein.

FIG. 13 illustrates a process comprising applying view
maintenance rules at a selected optimization level when
updating a relational database with data extracted from a
client computer cache.

DETAILED DESCRIPTION

Novel Data Access Architecture

In one embodiment, the innovation may be implemented
within and incorporate aspects of a novel data access archi-
tecture—an “Entity Framework”—as described in this sec-
tion. An example of such an such an Entity Framework is the
ADO.NET vNEXT® data access architecture developed by
MICROSOFT® Corporation. The following is a general
description of the ADO.NET vNEXT data access architec-
ture along with many implementation-specific details which
should not be considered necessary to practice the invention.
Overview

Traditional client-server applications relegate query and
persistence operations on their data to database systems. The
database system operates on data in the form of rows and
tables, while the application operates on data in terms of
higher-level programming language constructs (classes,
structures etc.). The impedance mismatch in the data
manipulation services between the application and the data-
base tier was problematic even in traditional systems. With
the advent of service-oriented architectures (SOA), applica-
tion servers and multi-tier applications, the need for data
access and manipulation services that are well-integrated
with programming environments and can operate in any tier
has increased tremendously.

Microsoft’s ADO.NET Entity Framework is a platform
for programming against data that raises the level of abstrac-
tion from the relational level to the conceptual (entity) level,
and thereby significantly reduces the impedance mismatch
for applications and data-centric services. Aspects of the
Entity Framework, the overall system architecture, and the
underlying technologies are described below.

Introduction

Modern applications require data management services in
all tiers. They need to handle increasingly richer forms of
data which includes not only structured business data (such
as Customers and Orders), but also semi-structured and
unstructured content such as email, calendars, files, and
documents. These applications need to integrate data from
multiple data sources as well as to collect, cleanse, transform
and store this data to enable a more agile decision making
process. Developers of these applications need data access,
programming and development tools to increase their pro-
ductivity. While relational databases have become the de
facto store for most structured data, there tends to be a
mismatch—the well-known impedance mismatch prob-
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lem—Dbetween the data model (and capabilities) exposed by
such databases, and the modeling capabilities needed by
applications.

Two other factors also play an important part in enterprise
system design. First, the data representation for applications
tends to evolve differently from that of the underlying
databases. Second, many systems are composed of disparate
database back-ends with differing degrees of capability. The
application logic in the mid-tier is responsible for data
transformations that reconcile these differences and present-
ing a more uniform view of data. These data transformations
quickly become complex. Implementing them, especially
when the underlying data needs to be updatable, is a hard
problem and adds complexity to the application. A signifi-
cant portion of application development—up to 40% in
some cases—is dedicated to writing custom data access
logic to work around these problems.

The same problems exist, and are no less severe, for
data-centric services. Conventional services such as query,
updates, and transactions have been implemented at the
logical schema (relational) level. However, the vast majority
of newer services, such as replication and analysis, best
operate on artifacts typically associated with a higher-level,
conceptual data model. For example, SQL. SERVER® Rep-
lication invented a structure called “logical record” to rep-
resent a limited form of entity. Similarly, SQL Server
Reporting Services builds reports on top of an entity-like
data model called semantic data model language (SDML).
Each of these services has custom tools to define conceptual
entities and map them down to relational tables—a Cus-
tomer entity will therefore need to be defined and mapped
one way for replication, another way for report building, yet
another way for other analysis services and so on. As with
applications, each service typically ends up building a
custom solution to this problem, and consequently, there is
code duplication and limited interoperability between these
services.

Object-to-relational mapping (ORM) technologies such
as HIBERNATE® and ORACLE TOPLINK® are a popular
alternative to custom data access logic. The mappings
between the database and applications are expressed in a
custom structure, or via schema annotations. These custom
structures may seem similar to a conceptual model; how-
ever, applications cannot program directly against this con-
ceptual model. While the mappings provide a degree of
independence between the database and the application, the
problem of handling multiple applications with slightly
differing views of the same data (e.g. consider two applica-
tions that want to look at different projections of a Customer
entity), or of the needs of services which tend to be more
dynamic (a priori class generation techniques do not work
well for data services, since the underlying database may
evolve quicker) are not well addressed by these solutions.

The ADO.NET Entity Framework is a platform for pro-
gramming against data that significantly reduces the imped-
ance mismatch for applications and data-centric services. It
differs from other systems and solutions in at least the
following respects:

1. The Entity Framework defines a rich conceptual data
model (the Entity Data Model, or the EDM), and a new data
manipulation language (Entity SQL) that operates on
instances of this model. Like SQL, the EDM is value-based
i.e. the EDM defines the structural aspects of entities, and
not the behaviors (or methods).
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2. This model is made concrete by a runtime that includes
a middleware mapping engine supporting powerful bidirec-
tional (EDM—Relational) mappings for queries and
updates.

3. Applications and services may program directly against
the value-based conceptual layer, or against programming-
language-specific object abstractions that may be layered
over the conceptual (entity) abstraction, providing ORM-
like functionality. We believe a value-based EDM concep-
tual abstraction is a more flexible basis for sharing data
among applications and data-centric services than objects.

4. Finally, the Entity Framework leverages Microsoft’s
new Language Integrated Query (LINQ) technologies that
extend programming languages natively with query expres-
sions to further reduce, and for some scenarios completely
eliminate, the impedance mismatch for applications.

The ADONET Entity Framework can be incorporated
into a larger framework such as the Microsoft NET Frame-
work.

The rest of this description of a data access architecture,
in the context of an ADO.NET Entity Framework embodi-
ment, is organized as follows. The “motivation” section
provides additional motivation for the Entity Framework.
The “Entity Framework™ section presents the Entity Frame-
work and the Entity Data Model. The “Programming Pat-
terns” section describes programming patterns for the Entity
Framework. The “Object Services” section outlines the
Object Services module. The “Mapping” section focuses on
the Mapping component of the Entity Framework, while the
“Query Processing” and “Update Processing” sections
explain how queries and updates are handled. The “Meta-
data” and “Tools” describe the metadata subsystem and the
tools components of the Entity Framework.

Motivation

This section discusses why a higher level data modeling
layer has become useful for applications and data-centric
services.

Information Levels in Data Applications

Today’s dominant information modeling methodologies
for producing database designs factor an information model
into four main levels: Physical, Logical (Relational), Con-
ceptual, and Programming/Presentation.

The physical model describes how data is represented in
physical resources such as memory, wire or disk. The
vocabulary of concepts discussed at this layer includes
record formats, file partitions and groups, heaps, and
indexes. The physical model is typically invisible to the
application—changes to the physical model should not
impact application logic, but may impact application per-
formance.

The logical data model is a complete and precise infor-
mation model of the target domain. The relational model is
the representation of choice for most logical data models.
The concepts discussed at the logical level include tables,
rows, primary-key/foreign-key constraints, and normaliza-
tion. While normalization helps to achieve data consistency,
increased concurrency, and better OLTP performance, it also
introduces significant challenges for applications. Normal-
ized data at the logical level is often too fragmented and
application logic needs to assemble rows from multiple
tables into higher level entities that more closely resemble
the artifacts of the application domain.

The conceptual model captures the core information enti-
ties from the problem domain and their relationships. A
well-known conceptual model is the Entity-Relationship
Model introduced by Peter Chen in 1976. UML is a more
recent example of a conceptual model. Most applications
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involve a conceptual design phase early in the application
development lifecycle. Unfortunately, however, the concep-
tual data model diagrams stay “pinned to a wall” growing
increasingly disjoint from the reality of the application
implementation with time. An important goal of the Entity
Framework is to make the conceptual data model (embodied
by the Entity Data Model described in the next section) a
concrete, programmable abstraction of the data platform.

The programming/presentation model describes how the
entities and relationships of the conceptual model need to be
manifested (presented) in different forms based on the task
at hand. Some entities need to be transformed into program-
ming language objects to implement application business
logic; others need to be transformed into XML streams for
web service invocations; still others need to be transformed
into in-memory structures such as lists or dictionaries for the
purposes of user-interface data binding. Naturally, there is
no universal programming model or presentation form; thus,
applications need flexible mechanisms to transform entities
into the various presentation forms.

Most applications and data-centric services would like to
reason in terms of high-level concepts such as an Order, not
about the several tables that an order may be normalized
over in a relational database schema. An order may manifest
itself at the presentation/programming level as a class
instance in Visual Basic or C# encapsulating the state and
logic associated with the order, or as an XML stream for
communicating with a web service. There is no one proper
presentation model; the real value is in providing a concrete
conceptual model, and then being able to use that model as
the basis for flexible mappings to and from various presen-
tation models and other higher level data services.
Evolution of Applications and Services

Data-based applications 10-20 years ago were typically
structured as data monoliths; closed systems with logic
factored by verb-object functions (e.g., create-order, update-
customer) that interacted with a database system at the
logical schema level. Several significant trends have shaped
the way that modern data-based applications are factored
and deployed today. Chief among these are object-oriented
factoring, service level application composition, and higher
level data-centric services. Conceptual entities are an impor-
tant part of today’s applications. These entities must be
mapped to a variety of representations and bound to a variety
of services. There is no one correct representation or service
binding: XML, Relational and Object representations are all
important, but no single one suffices for all applications.
There is a need, therefore, for a framework that supports a
higher-level data modeling layer, and also allows multiple
presentation layers to be plugged in—the Entity Framework
aims to fulfill these requirements.

Data-centric services have also been evolving in a similar
fashion. The services provided by a “data platform” 20 years
ago were minimal and focused around the logical schema in
an RDBMS. These services included query and update,
atomic transactions, and bulk operations such as backup and
load/extract.

SQL Server itself is evolving from a traditional RDBMS
to a complete data platform that provides a number of high
value data-centric services over entities realized at the
conceptual schema level. Several higher-level data-centric
services in the SQL Server product—Replication, Report
Builder to name just a couple—are increasingly delivering
their services at the conceptual schema level. Currently, each
of these services has a separate tool to describe conceptual
entities and map them down to the underlying logical
schema level. One goal of the Entity Framework is to
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provide a common, higher-level conceptual abstraction that
all of these services can share.
The Entity Framework

Microsoft’s ADO.NET framework that existed prior to
the Entity Framework described herein was a data-access
technology that enabled applications to connect to data
stores and manipulate data contained in them in various
ways. It was part of the Microsoft NET Framework and it
was highly integrated with the rest of the .NET Framework
class library. The prior ADONET framework had two major
parts: providers and services. ADO.NET providers are the
components that know how to talk to specific data stores.
Providers are composed of three core pieces of functionality:
connections manage access to the underlying data source;
commands represent a command (query, procedure call,
etc.) to be executed against the data source; and data readers
represent the result of command execution. ADO.NET ser-
vices include provider-neutral components such as DataSet
to enable offline data programming scenarios. (A DataSet is
a memory-resident representation of data that provides a
consistent relational programming model regardless of the
data source.)

Entity Framework—Overview

The ADO .NET Entity Framework builds on the pre-
existing existing ADO.NET provider model, and adds a
variety of novel functionality, for example:

1. A new conceptual data model, the Entity Data Model
(EDM), to help model conceptual schemas.

2. A new data manipulation language (DML), Entity SQL,
to manipulate instances of the EDM, and a programmatic
representation of a query (canonical command trees) to
communicate with different providers.

3. The ability to define mappings between the conceptual
schema and the logical schemas.

4. An ADO.NET provider programming model against the
conceptual schema.

5. An object services layer to provide ORM-like func-
tionality.

6. Integration with LINQ technology to make it easy to
program against data as objects from NET languages.

The Entity Data Model

The Entity Data Model (EDM) is useful for developing
rich data-centric applications. It extends the classic rela-
tional model with concepts from the E-R domain. Organi-
zational concepts in the EDM include entities and relation-
ships. Entities represent top-level items with identity, while
Relationships are used to relate (or, describe relationships
between) two or more entities.

The EDM is value-based like the relational model (and
SQL), rather than object/reference-based like C# (CLR).
Several object programming models can be easily layered on
top of the EDM. Similarly, the EDM can map to one or more
DBMS implementations for persistence.

The EDM and Entity SQL represent a richer data model
and data manipulation language for a data platform and are
intended to enable applications such as CRM and ERP,
data-intensive services such as Reporting, Business Intelli-
gence, Replication and Synchronization, and data-intensive
applications to model and manipulate data at a level of
structure and semantics that is closer to their needs. We now
discuss various concepts pertaining to the EDM.

EDM Types

An EntityType describes the structure of an entity. An
entity may have zero or more properties (attributes, fields)
that describe the structure of the entity. Additionally, an
entity type must define a key—a set of properties whose
values uniquely identify the entity instance within a collec-

10

15

20

25

30

35

40

45

55

8

tion of entities. An EntityType may derive from (or subtype)
another entity type—the EDM supports a single inheritance
model. The properties of an entity may be simple or complex
types. A SimpleType represents scalar (or atomic) types
(e.g., integer, string), while a ComplexType represents struc-
tured properties (e.g., an Address). A ComplexType is com-
posed of zero or more properties, which may themselves be
scalar or complex type properties. A RelationshipType
describes relationships between two (or more) entity types.
EDM Schemas provide a grouping mechanism for types—
types must be defined in a schema. The namespace of the
schema combined with the type name uniquely identifies the
specific type.
EDM Instance Model

Entity instances (or just entities) are logically contained
within an EntitySet. An EntitySet is a homogeneous collec-
tion of entities, i.e., all entities in an EntitySet must be of the
same (or derived) EntityType. An EntitySet is conceptually
similar to a database table, while an entity is similar to a row
of a table. An entity instance must belong to exactly one
entity set. In a similar fashion, relationship instances are
logically contained within a RelationshipSet. The definition
of a RelationshipSet scopes the relationship. That is, it
identifies the EntitySets that hold instances of the entity
types that participate in the relationship. A RelationshipSet
is conceptually similar to a link-table in a database. Simple-
Types and ComplexTypes can only be instantiated as prop-
erties of an EntityType. An EntityContainer is a logical
grouping of EntitySets and RelationshipSets—akin to how a
Schema is a grouping mechanism for EDM types.
An Example EDM Schema

A sample EDM schema is shown below:

<?xml version=*1.0" encoding="utf-8”?>
<Schema Namespace="AdventureWorks” Alias=“Self” ...>
<EntityContainer Name="AdventureWorksContainer”>
<EntitySet Name=“ESalesOrders”
EntityType="Self.ESalesOrder” />
<EntitySet Name="ESalesPersons”
EntityType="Self.ESalesPerson” />
<AssociationSet Name="ESalesPersonOrders”
Association="Self.ESalesPersonOrder”>
<End Role="ESalesPerson”
EntitySet="ESalesPersons” />
<End Role=“EOrder” EntitySet="ESalesOrders” />
</AssociationSet>
</EntityContainer>
<!-- Sales Order Type Hierarchy-->
<EntityType Name="ESalesOrder” Key="1d">
<Property Name="Id" Type="Int32”
Nullable="false” />
<Property Name=“AccountNum” Type="“String”
MaxLength=*15" />
</Entity Type>
<EntityType Name="EStoreSalesOrder”
BaseType="Self.ESalesOrder”>
<Property Name="Tax” Type="“Decimal”
Precision="28" Scale="4" />
</Entity Type>
<!-- Person EntityType -->
<EntityType Name="ESalesPerson” Key="1d">
<!-- Properties from SSalesPersons table-->
<Property Name="Id" Type="Int32”
Nullable="false” />
<Property Name=“Bonus” Type="“Decimal”
Precision="28" Scale="4" />
<!-- Properties from SEmployees table-->
<Property Name="Title” Type="String”
MaxLength="50" />
<Property Name=“HireDate” Type="DateTime” />
<!-- Properties from the SContacts table-->
<Property Name=“Name” Type="String”
MaxLength="50" />
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-continued

<Property Name="Contact” Type=“Self.ContactInfo”
Nullable="false” />
</Entity Type>
<ComplexType Name="ContactInfo”>
<Property Name=“Email” Type="“String”
MaxLength="50" />
<Property Name="“Phone” Type="“String”
MaxLength="*25" />
</ComplexType>
<Association Name="ESalesPersonOrder”>
<End Role=“EOrder” Type="Self.ESalesOrder”
Multiplicity="*" />
<End Role=“ESalesPerson” Multiplicity="1"
Type="Self.ESalesPerson” />
</Association>
</Schema>

High-Level Architecture

This section outlines the architecture of the ADO.NET
Entity Framework. Its main functional components are
illustrated in FIG. 1 and comprise the following:

Data source-specific providers. The Entity Framework
100 builds on the ADO.NET data provider model. There are
specific providers 122-125 for several data sources such as
SQL Server 151, 152, relational sources 153, non-relational
154, and Web services 155 sources. The providers 122-125
can be called from a store-specific ADO.NET Provider API
121.

EntityClient provider. The EntityClient provider 111 rep-
resents a concrete conceptual programming layer. It is a new,
value-based data provider where data is accessed in terms of
EDM entities and relationships and is queried/updated using
an entity-based SQL language (Entity SQL). The EntityCli-
ent provider 111 forms part of an Entity Data Services 110
package that may also include metadata services 112, a
query and update pipeline 113 (further illustrated in the
section below entitled “Further Aspects and Embodiments™),
transactions support 115, a view manager runtime 116, and
a view mapping subsystem 114 that supports updatable
EDM views over flat relational tables. The mapping between
tables and entities is specified declaratively via a mapping
specification language.

Object Services and other Programming Layers. The
Object Services component 131 of the Entity Framework
100 provides a rich object abstraction over entities, a rich set
of services over these objects, and allows applications to
program in an imperative coding experience 161 using
familiar programming language constructs. This component
provides state management services for objects (including
change tracking, identity resolution), supports services for
navigating and loading objects and relationships, supports
queries via LINQ and Entity SQL using components such as
ELINQ 132, and allows objects to be updated and persisted.

The Entity Framework allows multiple programming lay-
ers akin to 130 to be plugged onto the value-based entity
data services layer 110 exposed by the EntityClient provider
111. The Object Services 130 component is one such pro-
gramming layer that surfaces CLR objects, and provides
ORM-like functionality.

The Metadata services 112 component manages metadata
for the design time and runtime needs of the Entity Frame-
work 100, and applications over the Entity Framework. All
metadata associated with EDM concepts (entities, relation-
ships, EntitySets, RelationshipSets), store concepts (tables,
columns, constraints), and mapping concepts are exposed
via metadata interfaces. The metadata component 112 also
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serves as a link between the domain modeling tools which
support model-driven application design.

Design and Metadata Tools. The Entity Framework 100
integrates with domain designers 170 to enable model-
driven application development. The tools include EDM
design tools, modeling tools, 171, mapping design tools 172,
browsing design tools 173, binding design tools 174, code
generation tools 175, and query modelers.

Services. Rich data-centric services such as Reporting
141, Synchronization 142, Web Services 143 and Business
Analysis can be built using the Entity Framework 100.
Programming Patterns

The ADO.NET Entity Framework together with LINQ
increases application developer productivity by significantly
reducing the impedance mismatch between application code
and data. In this section we describe the evolution in data
access programming patterns at the logical, conceptual and
object abstraction layers.

Consider the following relational schema fragment based
on the sample AdventureWorks database. This database
consists of SContacts 201, SEmployees 202, SSalesPersons
203, and SSalesOrders 204 tables, which may follow a
relational schema such as that illustrated in FIG. 2.

SContacts (Contactld, Name, Email, Phone)

SEmployees (Employeeld, Title, HireDate)

SSalesPersons (SalesPersonld, Bonus)

SSalesorders (Salesorderod, SalesPersonld)

Consider an application code fragment to obtain the name
and hired date of salespeople who were hired prior to some
date (shown below). There are four main shortcomings in
this code fragment that have little to do with the business
question that needs to be answered. First, even though the
query can be stated in English very succinctly, the SQL
statement is quite verbose and requires the developer to be
aware of the normalized relational schema to formulate the
multi-table join required to collect the appropriate columns
from the SContacts, SEmployees, and SSalesPerson tables.
Additionally, any change to the underlying database sche-
mas will require corresponding changes in the code frag-
ment below. Second, the user has to define an explicit
connection to the data source. Third, since the results
returned are not strongly typed, any reference to non-
existing columns names will be caught only after the query
has executed. Fourth, the SQL statement is a string property
to the Command API and any errors in its formulation will
be only caught at execution time. While this code is written
using ADO.NET 2.0, the code pattern and its shortcomings
applies to any other relational data access API such as
ODBC, JDBC, or OLE-DB.

void EmpsByDate (DateTime date) {
using( SqlConnection con =
new SqlConnection (CONN_STRING) ) {
con.Open( );
SglCommand cmd = con.CreateCommand( );
cmd.CommandText = @
SELECT SalesPersonID, FirstName, HireDate
FROM SSalesPersons sp
INNER JOIN SEmployees e
ON sp.SalesPersonID = e.EmployeelD
INNER JOIN SContacts ¢
ON e.EmployeelD = c.ContactID
WHERE e.HireDate < @date™;
cmd.Parameters. AddWithValue(“@date”,date);
DbDataReader r = cmd.ExecuteReader( );
while(r.Read()) {
Console.WriteLine (“{0:d}:\t{1}”,
r[“HireDate”], r[“FirstName™]);

P




US 9,430,552 B2

11

The sample relational schema can be captured at the
conceptual level via an EDM schema, as illustrated in FIG.
3. It defines an entity type ESalesPerson 302 that abstracts
out the fragmentation of SContacts 201, SEmployees 202,
and SSalesPersons 203 tables. It also captures the inheri-
tance relationship between the EStoreOrder 301 and ESale-
sOrder 303 entity types.

The equivalent program at the conceptual layer is written
as follows:

void EmpsByDate (DateTime date) {
using( EntityConnection con =
new EntityConnection (CONN__STRING) ) {
con.Open( );
EntityCommand cmd = con.CreateCommand( );
cmd.CommandText = @”
SELECT VALUE sp
FROM ESalesPersons sp
WHERE sp.HireDate < @date”;
cmd.Parameters. AddWithValue (“date”,
date);
DbDataReader r = cmd.ExecuteReader(
CommandBehavior. Sequential Access);
while (r.Read()) {
Console. WriteLine("{0:d }:\t{1}”,
r[“HireDate]], r[“FirstName™])

P

The SQL statement has been considerably simplified—the
user no longer has to know about the precise database
layout. Furthermore, the application logic can be isolated
from changes to the underlying database schema. However,
this fragment is still string-based, still does not get the
benefits of programming language type-checking, and
returns weakly typed results.

By adding a thin object wrapper around entities and using
the Language Integrated Query (LINQ) extensions in C#,
one can rewrite the equivalent function with no impedance
mismatch as follows:

void EmpsByDate (DateTime date) {
using (AdventureWorksDB aw =
new AdventureWorksDB () {
var people = from p in aw.SalesPersons
where p.HireDate < date
select p;
foreach (Salesperson p in people) {
Console.WriteLine(“{0:d }\t{1}”,
p.HireDate, p.FirstName);
P

The query is simple; the application is (largely) isolated
from changes to the underlying database schema; and the
query is fully type-checked by the C# compiler. In addition
to queries, one can interact with objects and perform regular
Create, Read, Update and Delete (CRUD) operations on the
objects. Examples of these are described in the Update
Processing section.

Object Services

The Object Services component is a programming/pre-
sentation layer over the conceptual (entity) layer. It houses
several components that facilitate the interaction between
the programming language and the value-based conceptual
layer entities. We expect one object service to exist per
programming language runtime (e.g., .NET, Java). If it is
designed to support the .NET CLR, programs in any .NET
language can interact with the Entity Framework. Object
Services is composed of the following major components:

The ObjectContext class houses the database connection,
metadata workspace, object state manager, and object mate-
rializer. This class includes an object query interface
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ObjectQuery<T> to enable the formulation of queries in
either Entity SQL or LINQ syntax, and returns strongly-
typed object results as an ObjectCollection<T>. The Object-
Context also exposes query and update (i.e., SaveChanges)
object-level interfaces between the programming language
layer and the conceptual layer. The Object state manager has
three main functions: (a) cache query results, providing
identity resolution, and managing policies to merge objects
from overlapping query results, (b) track in-memory
changes, and (c) construct the change list input to the update
processing infrastructure (see Sec. 8). The object state
manager maintains the state of each entity in the cache—
detached (from the cache), added, unchanged, modified, and
deleted—and tracks their state transitions. The Object mate-
rializer performs the transformations during query and
update between entity values from the conceptual layer and
the corresponding CLR objects.

Mapping

The backbone of a general-purpose data access layer such
as the ADONET Entity Framework is a mapping that
establishes a relationship between the application data and
the data stored in the database. An application queries and
updates data at the object or conceptual level and these
operations are translated to the store via the mapping. There
are a number of technical challenges that have to be
addressed by any mapping solution. It is relatively straight-
forward to build an ORM that uses a one-to-one mapping to
expose each row in a relational table as an object, especially
if no declarative data manipulation is required. However, as
more complex mappings, set-based operations, perfor-
mance, multi-DBMS-vendor support, and other require-
ments weigh in, ad hoc solutions quickly grow out of hand.
Problem: Updates via Mappings

The problem of accessing data via mappings can be
modeled in terms of “views”, i.e., the objects/entities in the
client layer can be considered as rich views over the table
rows. However, it is well known that only a limited class of
views is updateable, e.g., commercial database systems do
not allow updates to multiple tables in views containing
joins or unions. Finding a unique update translation over
even quite simple views is rarely possible due to the intrinsic
under-specification of the update behavior by a view.
Research has shown that teasing out the update semantics
from views is hard and can require significant user expertise.
However, for mapping-driven data access, it is advantageous
that there exists a well-defined translation of every update to
the view.

Furthermore, in mapping-driven scenarios, the updatabil-
ity requirement goes beyond a single view. For example, a
business application that manipulates Customer and Order
entities effectively performs operations against two views.
Sometimes a consistent application state can only be
achieved by updating several views simultaneously. Case-
by-case translation of such updates may yield a combinato-
rial explosion of the update logic. Delegating its implemen-
tation to application developers is unsatisfactory because it
requires them to manually tackle one of the most compli-
cated parts of data access.

The ADO.NET Mapping Approach

The ADO.NET Entity Framework supports an innovative
mapping architecture that aims to address the above chal-
lenges. It exploits the following ideas:

1. Specification: Mappings are specified using a declara-
tive language that has well-defined semantics and puts a
wide range of mapping scenarios within reach of non-expert
users.

2. Compilation: Mappings are compiled into bidirectional
views, called query and update views, that drive query and
update processing in the runtime engine.
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3. Execution: Update translation is done using a general
mechanism that leverages materialized view maintenance, a
robust database technology. Query translation uses view
unfolding.

The new mapping architecture enables building a power-
ful stack of mapping-driven technologies in a principled,
future-proof way. Moreover, it opens up interesting research
directions of immediate practical relevance. The following
subsections illustrate the specification and compilation of
mappings. Execution is considered in the Query Processing
and Update Processing sections, below.

Specification of Mappings

A mapping is specified using a set of mapping fragments.
Each mapping fragment is a constraint of the form
Qzriries—Qrupies Where Q... 1s a query over the entity
schema (on the application side) and Q,,,.. is a query over
the database schema (on the store side). A mapping fragment
describes how a portion of entity data corresponds to a
portion of relational data. That is, a mapping fragment is an
elementary unit of specification that can be understood
independently of other fragments.

To illustrate, consider the sample mapping scenario in
FIG. 4. FIG. 4 illustrates a mapping between and entity
schema (left) and a database schema (right). The mapping
can be defined using an XML file or a graphical tool. The
entity schema corresponds to the one in the Entity Data
Model section herein. On the store side there are four tables,
SSalesOrders, SSalesPersons, SEmployees, and SContacts.

The mapping is represented in terms of queries on the
entity schema and the relational schema as shown in FIG. 5.

In FIG. 5, Fragment 1 says that the set of (Id, Account-
Num) values for all entities of exact type ESalesOrder in
ESalesOrders is identical to the set of (SalesOrderld,
AccountNum) values retrieved from the SSalesOrders table
for which IsOnline is true. Fragment 2 is similar. Fragment
3 maps the association set ESalesPersonOrders to the SSale-
sOrders table and says that each association entry corre-
sponds to the primary key, foreign key pair for each row in
this table. Fragments 4, 5, and 6 say that the entities in the
ESalesPersons entity set are split across three tables SSales-
Persons, SContacts, SEmployees.

Bidirectional Views

The mappings are compiled into bidirectional Entity SQL
views that drive the runtime. The query views express
entities in terms of tables, while the update views express
tables in terms of entities.

Update views may be somewhat counterintuitive because
they specify persistent data in terms of virtual constructs, but
as we show later, they can be leveraged for supporting
updates in an elegant way. The generated views ‘respect’ the
mapping in a well-defined sense and have the following
properties (note that the presentation is slightly simplified—
in particular, the persistent state is not completely deter-
mined by the virtual state):

Entities=QueryViews(Tables)

Tables=UpdateViews(Entities)

Entities=QueryViews(UpdateViews(Entities))

The last condition is the roundtripping criterion, which
ensures that all entity data can be persisted and reassembled
from the database in a lossless fashion. The mapping com-
piler included in the Entity Framework guarantees that the
generated views satisty the roundtripping criterion. It raises
an error if no such views can be produced from the input
mapping.

FIG. 6 shows the bidirectional views—the query and
update views—generated by the mapping compiler for the
mapping in FIG. 5. In general, the views are significantly
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more complex than the input mapping, as they explicitly
specify the required data transformations. For example, in
QV, the ESalesOrders entity set is constructed from the
SSalesOrders table so that either an ESalesOrder or an
EStoreSalesOrder is instantiated depending on whether or
not the IsOnline flag is true. To reassemble the ESalesPer-
sons entity set from the relational tables, one needs to
perform a join between SSalesPersons, SEmployees, and
SContacts tables (QV}).

Writing query and update views by hand that satisfy the
roundtripping criterion is tricky and requires significant
database expertise; therefore, present embodiments of the
Entity Framework only accept the views produced by the
built-in mapping compiler, although accepting views pro-
duced by other compilers or by hand is certainly plausible in
alternative embodiments.

Mapping Compiler

The Entity Framework contains a mapping compiler that
generates the query and update views from the EDM
schema, the store schema, and the mapping (the metadata
artifacts are discussed in the Metadata section herein). These
views are consumed by the query and update pipelines. The
compiler can be invoked either at design time or at runtime
when the first query is executed against the EDM schema.
The view generation algorithms used in the compiler are
based on the answering-queries-using-views techniques for
exact rewritings.

Query Processing
Query Languages

The Entity Framework is designed to work with multiple
query languages. We describe Entity SQL and LINQ
embodiments in more detail herein, understanding that the
same or similar principles can be extended to other embodi-
ments.

Entity SQL

Entity SQL is a derivative of SQL designed to query and
manipulate EDM instances. Entity SQL extends standard
SQL in the following ways.

1. Native support for EDM constructs (entities, relation-
ships, complex types etc.): constructors, member accessors,
type interrogation, relationship navigation, nest/unnest etc.

2. Namespaces. Entity SQL uses namespaces as a group-
ing construct for types and functions (similar to XQuery and
other programming languages).

3. Extensible functions. Entity SQL supports no built-in
functions. All functions (min, max, substring, etc.) are
defined externally in a namespace, and imported into a
query, usually from the underlying store.

4. More orthogonal treatment of sub-queries and other
constructs as compared to SQL.

The Entity Framework supports Entity SQL as the query
language at the EntityClient provider layer, and in the Object
Services component. A sample Entity SQL query is shown
in the Programming Patterns section herein.

Language Integrated Query (LINQ)

Language-integrated query, or LINQ, is an innovation in
NET programming languages that introduces query-related
constructs to mainstream programming languages such as
C# and Visual Basic. The query expressions are not pro-
cessed by an external tool or language pre-processor but
instead are first-class expressions of the languages them-
selves. LINQ allows query expressions to benefit from the
rich metadata, compile-time syntax checking, static typing
and IntelliSense that was previously available only to
imperative code. LINQ defines a set of general-purpose
standard query operators that allow traversal, filter, join,
projection, sorting and grouping operations to be expressed
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in a direct yet declarative way in any .NET-based program-
ming language. NET Languages such as Visual Basic and
C# also support query comprehensions—language syntax
extensions that leverage the standard query operators. An
example query using LINQ in C# is shown in the Program-
ming Patterns section herein.

Canonical Command Trees

Canonical Command Trees—more simply, command
trees—are the programmatic (tree) representation of all
queries in the Entity Framework. Queries expressed via
Entity SQL or LINQ are first parsed and converted into
command trees; all subsequent processing is performed on
the command trees. The Entity Framework also allows
queries to be dynamically constructed (or edited) via com-
mand tree construction/edit APIs. Command trees may
represent queries, inserts, updates, deletes, and procedure
calls. A command tree is composed of one or more Expres-
sions. An Expression simply represents some computation—
the Entity Framework provides a variety of expressions
including constants, parameters, arithmetic operations, rela-
tional operations (projection, filter, joins etc.), function calls
and so on. Finally, command trees are used as the means of
communication for queries between the EntityClient pro-
vider and the underlying store-specific provider.

Query Pipeline

Query execution in the Entity Framework is delegated to
the data stores. The query processing infrastructure of the
Entity Framework is responsible for breaking down an
Entity SQL or LINQ query into one or more elementary,
relational-only queries that can be evaluated by the under-
lying store, along with additional assembly information,
which is used to reshape the flat results of the simpler
queries into the richer EDM structures.

The Entity Framework assumes that stores must support
capabilities similar to that of SQL Server 2000. Queries are
broken down into simpler flat-relational queries that fit this
profile. Alternative embodiments of the Entity Framework
may allow stores to take on larger parts of query processing.

A typical query is processed as follows.

Syntax and Semantic Analysis. An Entity SQL query is
first parsed and semantically analyzed using information
from the Metadata services component. LINQ queries are
parsed and analyzed as part of the appropriate language
compiler.

Conversion to a Canonical Command Tree. The query is
now converted into a command tree, regardless of how it
was originally expressed, and validated.

Mapping View Unfolding. Queries in the Entity Frame-
work target the conceptual (EDM) schemas. These queries
must be translated to reference the underlying database
tables and views instead. This process—referred to as map-
ping view unfolding—is analogous to the view unfolding
mechanism in database systems. The mappings between the
EDM schema and the database schema are compiled into
query and update views. The query view is then unfolded in
the user query—the query now targets the database tables
and views.

Structured Type Elimination. All references to structured
types are now eliminated from the query, and added to the
reassembly information (to guide result assembly). This
includes references to type constructors, member accessors,
type interrogation expressions.

Projection Pruning. The query is analyzed, and unrefer-
enced expressions in the query are eliminated.

Nest Pull-up. Any nesting operations (constructing nested
collections) in the query are pushed up to the root of the
query tree over a sub-tree containing only flat relational

10

15

20

25

30

35

40

45

50

55

60

65

16

operators. Typically, the nesting operation is transformed
into a left outer join (or an outer apply), and the flat results
from the ensuing query are then reassembled (see Result
Assembly below) into the appropriate results.

Transformations. A set of heuristic transformations are
applied to simplify the query. These include filter push-
downs, apply to join conversions, case expression folding,
etc. Redundant joins (self-joins, primary-key, foreign-key
joins) are eliminated at this stage. Note that the query
processing infrastructure here does not perform any cost-
based optimization.

Translation into Provider-Specific Commands. The query
(i.e., command tree) is now handed off to providers to
produce a provider-specific command, possibly in the pro-
viders’ native SQL dialect. We refer to this step as SQLGen.

Execution. The provider commands are executed.

Result Assembly. The results (DataReaders) from the
providers are then reshaped into the appropriate form using
the assembly information gathered earlier, and a single
DataReader is returned to the caller.

Materialization. For queries issued via the Object Ser-
vices component, the results are then materialized into the
appropriate programming language objects.

SQLGen

As mentioned in the previous section, query execution
may be delegated to the underlying store. The query must
first be translated into a form that is appropriate for the store.
However, different stores support different dialects of SQL,
and it is infeasible for the Entity Framework to natively
support all of them. The query pipeline hands over a query
in the form of a command tree to the store provider. The
store provider must translate the command tree into a native
command. This is usually accomplished by translating the
command tree into the provider’s native SQL dialect—
hence the term SQLGen for this phase. The resulting com-
mand can then be executed to produce the relevant results.
In addition to working against various versions of SQL
Server, the Entity Framework may be integrated with vari-
ous third-party ADO.NET providers for DB2, Oracle, and
MySQL, and so forth.

Update Processing

This section describes how update processing is per-
formed in the ADO.NET Entity Framework. There are two
phases to update processing, compile time and runtime. In
the Bidirectional Views section provided herein, we
described the process of compiling the mapping specifica-
tion into a collection of view expressions. This section
describes how these view expressions are exploited at run-
time to translate the object modifications performed at the
object layer (or Entity SQL DML updates at the EDM layer)
into equivalent SQL updates at the relational layer.
Updates via View Maintenance

One of the insights exploited in the ADO.NET mapping
architecture is that materialized view maintenance algo-
rithms can be leveraged to propagate updates through bidi-
rectional views. This process is illustrated in FIG. 7.

Tables inside a database, as illustrated on the right hand
side of FIG. 7, hold persistent data. An EntityContainer, as
illustrated on the left side of FIG. 7, represents a virtual state
of this persistent data since typically only a tiny fraction of
the entities in the EntitySets are materialized on the client.
The goal is to translate an update AEntities on the state of
Entities into an update ATables on the persistent state of
Tables. This process is referred to as incremental view
maintenance, because the update is performed based on an
update AEntities representing the changed aspects of an
entity.
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This can be done using the following two steps:

1. View Maintenance:

ATables=AUpdateViews(Entities, AEntities)

2. View Unfolding:

ATables=AUpdateViews (QueryViews(Tables), AEntities)

In Step 1, view maintenance algorithms are applied to
update views. This produces a set of delta expressions,
AUpdateViews, which tell us how to obtain ATables from
AEntities and a snapshot of Entities. Since the latter is not
fully materialized on the client, in Step 2 view unfolding is
used to combine the delta expressions with query views.
Together, these steps generate an expression that takes as
input the initial database state and the update to entities, and
computes the update to the database.

This approach yields a clean, uniform algorithm that
works for both object-at-a-time and set-based updates (i.e.,
those expressed using data manipulation statements), and
leverages robust database technology. In practice, Step 1 is
often sufficient for update translation since many updates do
not directly depend on the current database state; in those
situations we have ATables=AUpdateViews(AEntities). If
AEntities is given as a set of object-at-a-time modifications
on cached entities, then Step 1 can be further optimized by
executing view maintenance algorithms directly on the
modified entities rather than computing the AUpdateViews
expression.

Translating Updates on Objects

To illustrate the approach outlined above, consider the
following example which gives a bonus and promotion to
eligible salespeople who have been with the company for at
least 5 years.

using(AdventureWorksDB aw =
new AdventureWorksDB(...)) {
// People hired at least 5 years ago
Datetime d = DateTime.Today.AddYears (-5);
var people = from p in aw.SalesPeople
where p.HireDate < d
select p;
foreach(SalesPerson p in people) {
if(HRWebService.ReadyForPromotion(p)) {
p-Bonus += 10;
p.Title = “Senior Sales Representative”;

}

aw.SaveChanges( ); // push changes to DB

AdventureWorksDB is a tool-generated class that derives
from a generic object services class, called ObjectContext,
that houses the database connection, metadata workspace,
and object cache data structure and exposes the
SaveChanges method. As we explained in the Object Ser-
vices section, the object cache maintains a list of entities,
each of which is in one of the following states: detached
(from the cache), added, unchanged, modified, and deleted.
The above code fragment describes an update that modifies
the title and bonus properties of ESalesPerson objects which
are stored in the SEmployees and SSalesPersons tables,
respectively. The process of transforming the object updates
into the corresponding table updates triggered by the call to
the SaveChanges method may comprise the following four
steps:

Change List Generation. A list of changes per entity set is
created from the object cache. Updates are represented as
lists of deleted and inserted elements. Added objects become
inserts. Deleted objects become deletes.
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Value Expression Propagation. This step takes the list of
changes and the update views (kept in the metadata work-
space) and, using incremental materialized view mainte-
nance expressions AUpdateViews, transforms the list of
object changes into a sequence of algebraic base table insert
and delete expressions against the underlying affected
tables. For this example, the relevant update views are UV,
and UV, shown in FIG. 6. These views are simple project-
select queries, so applying view maintenance rules is
straightforward. We obtain the following AUpdateViews
expressions, which are the same for insertions (A*) and
deletions (A7):

ASSalesPersons=SELECT  p.Id, p-Bonus FROM
AESalesPersons AS p
ASEmployees=SELECT p-Id, p-Title FROM

AESalesPersons AS p
ASContacts=SELECT p.Id, p.Name, p.Contact.Email,

p-Contact.Phone FROM AESalesPersons AS p

Suppose the loop shown above updated the entity
E_;/~ESalesPersons(1, 20, “ ”, “Alice”, Contact(“a@sales”,
NULL)) to E,..= ESalesPersons(l 30, “Senior . . . ”
“Alice”, Contact(“a@sales”, NULL)). Then, the initial delta
is  A*ESalesOrders={E,.} for insertions and A~
BESalesOrders={E,,,} for deletions. We obtain A*SSalesPer-
sons={(1, 30)}, A~SSalesPersons={(1, 20)}. The computed
insertions and deletions on the SSalesPersons table are then
combined into a single update that sets the Bonus value to
30. The deltas on SEmployees are computed analogously.
For SContacts, we get A*SContacts=A~SContacts, so no
update is required.

In addition to computing the deltas on the affected base
tables, this phase is responsible for (a) the correct ordering
in which the table updates must be performed, taking into
consideration referential integrity constraints, (b) retrieval of
store-generated keys needed prior to committing updates to
the database, and (c) gathering the information for optimistic
concurrency control.

SQL DML or Stored Procedure Calls Generation. This
step transforms the list of inserted and deleted deltas plus
additional annotations related to concurrency handling into
a sequence of SQL DML statements or stored procedure
calls. In this example, the update statements generated for
the affected salesperson are:

BEGIN TRANSACTION

UPDATE [dbo] . [SSalesPersons] SET [Bonus]=30
WHERE [SalesPersonID]=1

UPDATE [dbo] . [SEmployees]

SET [Title]= N’Senior Sales Representative’
WHERE [EmployeelD]=1

COMMIT TRANSACTION

Cache Synchronization. Once updates have been per-
formed, the state of the cache is synchronized with the new
state of the database. Thus, if necessary, a mini-query-
processing step is performed to transform the new modified
relational state to its corresponding entity and object state.
Metadata

The metadata subsystem is analogous to a database cata-
log, and is designed to satisfy the design-time and runtime
metadata needs of the Entity Framework.

Metadata Artifacts

Metadata artifacts may include the following:

Conceptual Schema (CSDL files): The conceptual schema
is usually defined in a CSDL file (Conceptual Schema
Definition Language) and contains the EDM types (entity
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types, relationships) and entity sets that describes the appli-
cation’s conceptual view of the data.

Store Schema (SSDL files): The store schema information
(tables, columns, keys etc.) are expressed using CSDL
vocabulary terms. For example, EntitySets denote tables,
and properties denote columns. Usually, these are defined in
an SSDL (Store Schema Definition Language) file.

C-S Mapping Specification (MSL file): The mapping
between the conceptual schema and the store schema is
captured in a mapping specification, typically in an MSL file
(Mapping Specification Language). This specification is
used by the mapping compiler to produce the query and
update views.

Provider Manifest: The Provider Manifest is a description
of functionality supported by each provider, and includes
information about:

1. The primitive types (varchar, int, etc.) supported by the
provider, and the EDM types (string, int32, etc.) they
correspond to.

2. The built-in functions (and their signatures) for the
provider.

This information is used by the Entity SQL parser as part
of query analysis. In addition to these artifacts, the metadata
subsystem also keeps track of the generated object classes,
and the mappings between these and the corresponding
conceptual entity types.

Metadata Services Architecture

The metadata consumed by the Entity Framework comes
from different sources in different formats. The metadata
subsystem is built over a set of unified low-level metadata
interfaces that allow the metadata runtime to work indepen-
dently of the details of the different metadata persistent
formats/sources.

The metadata services include:

Enumeration of different types of metadata.

Metadata search by key.

Metadata browsing/navigation.

Creation of transient metadata (e.g., for query process-
ing).

Session independent metadata caching and reusing.

The metadata subsystem includes the following compo-
nents. The metadata cache caches metadata retrieved from
different sources, and provides consumers a common API to
retrieve and manipulate the metadata. Since the metadata
may be represented in different forms, and stored in different
locations, the metadata subsystem supports a loader inter-
face. Metadata loaders implement the loader interface, and
are responsible for loading the metadata from the appropri-
ate source (CSDL/SSDL files etc.). A metadata workspace
aggregates several pieces of metadata to provide the com-
plete set of metadata for an application. A metadata work-
space usually contains information about the conceptual
model, the store schema, the object classes, and the map-
pings between these constructs.

Tools

The Entity Framework may include a collection of
design-time tools to increase development productivity.

Model designer: One of the early steps in the development
of'an application is the definition of a conceptual model. The
Entity Framework allows application designers and analysts
to describe the main concepts of their application in terms of
entities and relationships. The model designer is a tool that
allows this conceptual modeling task to be performed inter-
actively. The artifacts of the design are captured directly in
the Metadata component which may persist its state in the
database. The model designer can also generate and con-
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sume model descriptions (specified via CSDL), and can
synthesize EDM models from relational metadata.

Mapping designer: Once an EDM model has been
designed, the developer may specify how a conceptual
model maps to a relational database. This task is facilitated
by the mapping designer, which may present a user interface
as illustrated in FIG. 8. The mapping designer helps devel-
opers describe how entities and relationships in an entity
schema presented on the left hand side of the user interface
map to tables and columns in the database, as reflected in a
database schema presented on the right side of the user
interface in FIG. 8. The links in the graph presented in the
middle section of FIG. 8 visualize the mapping expressions
specified declaratively as equalities of Entity SQL queries.
These expressions become the input to the bidirectional
mapping compilation component which generates the query
and update views.

Code generation: The EDM conceptual model is sufficient
for many applications as it provides a familiar interaction
model based on ADO.NET code patterns (commands, con-
nections, data readers). However, many applications prefer
to interact with data as strongly-typed objects. The Entity
Framework includes a set of code generation tools that take
EDM models as input and produce strongly-typed CLR
classes for entity types. The code generation tools can also
generate a strongly-typed object context (e.g., Adventure-
WorksDB) which exposes strongly typed collections for all
entity and relationship sets defined by the model (e.g.,
ObjectQuery<SalesPerson>).

Further Aspects and Embodiments

As described above, an update pipeline 113 may be
utilized in an Entity Framework 100 to persist objects to a
database. One embodiment of an exemplary update pipeline
113 is illustrated in FIG. 9.

FIG. 9 illustrates an exemplary update pipeline configu-
ration according to an embodiment of the invention. The
elements of FIG. 9 may be viewed as both components, such
as software components, in a computer system, as instruc-
tions recorded on a computer readable media, or as steps in
a method according to the invention.

In general, with regard to a pipeline as illustrated in FIG.
9, a series of steps may be performed whereby a data access
layer object runtime is given a list of object updates/inserts/
deletes that are first transformed to canonical query tree
(CQT) delta expressions. These delta expressions are trans-
formed via an update mapping view into delta expressions in
store terms. Store level SQL DML statements are then
compiled and executed to implement the required changes in
the store.

Within an object context, the data access layer object
runtime keeps track of the objects that have been created,
updated and deleted. The runtime tracks changes at the level
of entities, relationships and first-order attributes therein.
When the application requests for these changes to be sent
to the server (i.e., by calling a function of the data access
layer which may be referred to herein as “SaveChanges”),
the operations associated with the update pipeline of FIG. 9
may be executed.

It should be recognized that “runtime” update processing
performed by an update pipeline as set forth herein can be
complemented by aspects of applications that are configured
at “compile time.” Such compile time aspects are discussed
herein to the extent necessary to illustrate and enable the
runtime operation of the update pipeline.

In general, when an application persists its object
changes, an update pipeline can translate the object changes
into store changes by performing incremental view mainte-
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nance with respect to update mapping views generated by a
mapping compiler. There are two types of changes that can
be performed by applications:

Single object changes—changes made to individual
objects while navigating the object graph. For single object
changes, the system keeps track of the objects that have been
created, updated, and deleted in the current transaction.

Query-based changes—changes performed by issuing an
update/delete statement based on a eSQL query as is done in
relational databases for updating tables.

This specification describes single-object changes, or
“instance-based” updates, and it should be appreciated that
similar approaches may be applied to query-based changes
scenarios. Certain functionality may be added or removed
from the mechanisms for single-object changes, in order to
implement an update pipeline for query-based changes, as
will be appreciated.

Change List Generation

Referring to FI1G. 9, a first step in the update pipeline may
be to generate a change list 901. Given an object cache,
embodiments may produce a list of delta expressions. Delta
expressions are the primary interface between layers in the
pipeline. They encapsulate information about data rows and
exception information.

Alist of delta expressions describes modification requests
for particular extents. An “extent” is defined herein as either
or both of an entity set and a relationship set.

In one embodiment, a change to a relation R (similarly for
EDM extent), denoted as Delta(R), is represented in terms of
three artifacts:

Inserts: expression i(R) that produces the tuples to be
inserted.

Deletes: expression d(R) that produces keys of tuples to
be deleted (a key may be the entire tuple).

Updates: expression u(R) that produces the values of
tuples to be updated and the new values for the updated
attributes.

i(R), d(R), and u(R) are pairwise disjoint, i.e., reference
disjoint sets of keys.

To propagate the changes over view V(R , . . ., R,,) means
to compute the changes i(V), d(V), u(V) in terms of the
inputs R, i(R)), d(R)), u(R)) for 1<=j<=n. In practice, u(R,)
is split into d(R,) and i(R,) which get the old and new values
respectively.

The input deltas describe the changes made to the extents
of entities, compositions and associations. In this descrip-
tion, we focus on changes to entity sets. Compositions and
associations are treated analogously—they are specializa-
tions of relationships as defined above.

An insert specifies an expression that defines a set of
entities built from scalars using type constructors and nest-
ing. Example:

INSERT INTO P VALUES NewPerson(l,
{“WA”, “CA”}), NewCustomer(2, “Alice”, { })

i(P)=SELECT NewPerson(1, “John”, {“WA”, “CA”}),
NewCustomer(2, “Alice”, { })

A delete specifies an expression that determines the keys
of the entities to be deleted. Example:

DELETE FROM P WHERE pid IN (1, 2, 3)

d(P)=SELECT pid WHERE pid IN (1,2,3)

An update specifies an expression that sets the some fields
of the entities to constant expressions. Example:

UPDATE P SET name.fn=*John”, addrs={ “WA”, “CA”}
WHERE pid=1

u(P)=SELECT 1, “John” as name.fn, {“WA”, “CA”} as
addrs

“John”,
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The WHERE clauses in delete and update statements are
scalar key comparisons. In update statements, set-valued
attributes are updated as a whole (no updates inside sets).
Change List Extraction and Grouping

Referring back to FIG. 9, change list extraction 902 and
grouping 903 may be performed next. From the object
cache, e.g. a cache on a client computer that is operatively
coupled to a server associated with a data store, we can
retrieve a list of entities (CacheEntry). This is referred to as
extraction 902. The state (DataRowState) of an entity indi-
cates what, if any, update action is required. The following
is an exemplary list of states that may be supported, along
with a description how to support each state:

Detached: no op (the entity is not associated with the
cache)

Added: such entities generate an “insert” expression

Unchanged: no op (we allow “passive” concurrency con-
flicts)

Modified: such entities generate both an insert and a
delete expression

Deleted: such entities generate a “delete” expression

The object cache acts as the interface between objects and
value layer (e.g., EDM) constructs. For this reason, the
extraction component 902 may directly produce delta
expressions at the EDM level. As records are extracted from
the cache, they may be marked up in one exemplary embodi-
ment as follows:

1. Each record is associated with a cache entry. Every
node in the expression describing the record has a back
pointer to the record. This allows fine-grained error report-
ing.

2. The cache entry exposes an enumeration of modified
(first level) properties. These properties and any nested
values (if the property is a complex type) have no flag
markup. All other nodes are marked “Preserve”. All model
properties flagged as concurrency control values by Meta-
data are marked “ConcurrencyValue”. Via the markup Ordi-
nal and Parent properties, we can trace a path back to the
position in a cache entry holding the value. This allows
reverse mapping server generated values to the cache.

Sometimes, we don’t have enough information to know
which table a value space extent will affect in the store. To
illustrate, consider a “foreign key in the store” scenario.
Consider what happens if a user modifies only the relation-
ship by assigning an address to a different customer. The
update pipeline doesn’t need to know anything about the
address or the customer to know how the reassignment is
performed:

UPDATE SAddress1 SET CustomerID="Bob”> WHERE
AddressID=1

Now assume now that CAddress1 extent is polymorphic,
storing both addresses and US address types. Given the same
change, we may not know whether to execute:

UPDATE SAddress! . ..

Or:

UPDATE SUSAddress1 . . .

In this scenario, we would need to know about the address
targeted by a relationship in order to decide where the
relationship will live in the store. One exemplary solution to
this problem has two parts: first, identify when information
extraneous to the update will be relevant to the update, and;
second, feed this information to the update pipeline. The
second task may be accomplished by passing the pipeline a
null-op update request for the entity providing the necessary
context.

In some embodiments, a compensation step may be
conducted after extraction.
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Referring back to FIG. 9, for purposes of propagation, we
produce lists of inserted and deleted elements for every
extent in a grouping step 903. In one embodiment, each
extent has an associated ChangeNode containing these lists:

internal class ChangeNode

/// <summary>

/// Gets the type of the rows contained in this node. This
type corresponds (not coincidentally) to the type of an
expression in an update mapping view.

M </summary>

internal TypeUsage ElementType { get; }

/// <summary>

/I Gets a list of rows to be inserted.

M </summary>

internal List<PropagatorResult> Inserted { get; }

/// <summary>

/I Gets a list of rows to be deleted.

M </summary>

internal List<PropagatorResult> Deleted { get; }

/// <summary>

/I Gets or sets a version of a record at this node with
default values. The record has the type of the node we are
visiting.

M </summary>

internal PropagatorResult Placeholder { get; set; }

}

In the course of extraction 902, cache entries can be
transformed to lightweight “PropagatorResult” instances
which can be efficiently navigated in during propagation.
Notice that we do not explicitly represent updates, but
instead track them as inserts (based on CacheEntry.Current-
Values) and deletes (based on CacheEntry.Original Values).
When compiling store DML expressions, embodiments may
merge deletes and inserts.

In one embodiment, translation from records to expres-
sions is handled by a “RecordConverter” class. This class
recursively constructs expressions given records. As an
optimization, we can cache state required to convert specific
to a particular record structure in a “TypeConverter” class.
Ifthe converter recognizes a particular record structure (e.g.,
DataRecordInfo) it can reuse the associated TypeConverter.
Value Propagation

Value expression propagation 904 may be conducted next.
In this stage, C delta expressions are mapped to S delta
expressions. The propagation component 904 takes as input
“update mapping views” retrieved from the metadata work-
space and EDM level change requests from the cache.

Update mapping views describe store tables with respect
to entities. These views allow us to treat the O-R update
problem as a special case of view maintenance. Update
views and query views may contain both relational and
non-relational operators. In one embodiment, we assume
that in query views all non-relational operators appear on the
top of the expression tree, whereas in update views all
non-relational operators appear at the bottom of the expres-
sion tree. This representation is beneficial in eliminating
non-relational operators from the change statements sent to
the store using simple logic (as opposed to a fully-blown
expression simplifier). Bringing the expression trees into
this shape could be done in a separate rewriting step. Such
separate step desirable, in general, to support DML changes
to move non-relational operators upward in the WHERE
clauses of DML statements. For instance-based changes,
such rewriting step can be avoided if (a) the views with the
above property are produced directly in the view generation
phase, and (b) DML statements representing inserted entities
are segmented, so that all non-relational operators appear on
top.
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In one embodiment, the relational operators that may
appear in the views are:

select (including case statements, equality predicates,
AND/OR/NOT, IS OF TYPE)

project

inner join

left outer join

union all (no duplicate elimination)

The non-relational operators that may appear in the views
are:

type constructor (for entities and complex values)

field extractor

nest block: combination of group-by and nest operators
that perform a single level of nesting

unnest block: combination of (outer) apply and unnest
operators that perform a single level of unnesting.

Each query view may have the following structure:
QView=NRE(REL, . . . ,REn) where:

NRE is an non-relational expression containing only type
constructors and nest blocks,

REL, ... ,REn are purely relational expressions involving
one or multiple store tables.

Each update view may have the following structure:
UView=RE(NRE1(P1), . . . , NREn(Pn)) where:

RE is a relational-only expression of the following shape:
Union(Select(Project(JoinlLOJ)*)),

NRE1(P1), . .. ,NREn(Pn) are non-relational expressions
over a single extent (entity set/association) of the following
shape: Project(Extract/Unnest block)*.

Update views are canonical query trees with certain
constraints. The view is an expression returning a result set
with columns for every attribute of a store table (the tree is
not responsible for interpreting or distinguishing keys,
server-generated columns, or concurrency tokens).

For each table in the store, there is a single update
mapping view. In one embodiment, we subdivide the view
into separate relational components as illustrated in FIG. 10.
Note that in the exemplary embodiment of FIG. 10, the order
of nodes is not constrained, only the types of nodes. Filter
predicates are not at all constrained.

The view may also be subdivided into multiple non-
relational components as illustrated in FIG. 11. FIG. 11
illustrates a non-Relational query describing an RES-EDM
“extent” with respect to a EDM extent.

As described above, update views can have the form
UView=RE(NRE1(P1), . . . , NREn(Pn)). Delta propagation
can be done in two steps:

propagate deltas over non-relational expressions NREi

propagate deltas over relational expression RE

For the purposes of value propagation, one embodiment
can ignore the distinction—all operations are performed in
the client, which can perform both relational and non-
relational operations—but for the purposes of this docu-
ment, the distinction is maintained in the interest of gener-
ality.

When conducting delta propagation for non-relational
expressions (field extractors only), non-relational expression
V=NRE(P) contains only unnest blocks and field extractors
on top of a single extent P. V has a relational signature.

In one embodiment, inserts and deletes can be propagated
in bulk using a simple rule:

Delta(V)=NRE(Delta(P))

In other words, to compute the delta, we simply substitute
P by Delta(P) in the input expression.

IfNRE(P) contains only field extractors (M1 scenario), we
have: V=Project| . . . ](P), where the project operator
contains all field extractors, so Delta(V)=Project[ . . . |
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(Delta(P)). For updates, only the assignment statements of
the fields referenced in Project[ . . . | get propagated.

Example:

Let V(pid, fn, In)=SELECT p.pid, p.name.fn, p.name.ln
FROM p in P

Let i(P)=SELECT NewPerson(l,
“Smith”))

Then, i(V)=SELECT p.pid, p.name.fn, p.name.ln FROM
p in i(P)={1, “John”, “Smith”}

Let u(P)=SELECT 1 as pid, “John” as p.name.fn

Then, u(V) is given as SELECT 1 as pid, “John” as fn

The value propagator 904 translates changes C-Space
extents into S-Space commands. It identifies all changes
propagated to a specific table in the store. As input, it takes
an update mapping view (expressed as a CTree) and a
“grouper” which allows the propagator 904 to retrieve
changes being applied to an extent.

NewName(“John”,

/// <summary>

/// Returns modification groups (as <see cref="ChangeNode” />)
associated with a particular C-Space extent.

/] </summary>

internal interface IGrouper

/// <summary>
/// Gets changes extracted for a particular C-Space extent.
M </summary>
/// <exception cref="IndexOutOfRangeException”>When no
changes are found for an extent.</exception>
/// <param name="“extent”>C-Space extent.</param>
/// <returns>Change node with Deleted and Inserted lists
populated (nothing else)</returns>
ChangeNode GetExtentModifications(IExtent extent);

A change node contains information about modifications
at a specific node in the update mapping view (UMV). The
grouper returns changes related to an extent expression in
the UMV (a leaf node in the tree). When the propagator
reaches an extent node, it “seeds” the propagator 904 with
values returned by the grouper.

The propagator 904 uses a bottom-up recursive approach
to propagate changes up UMV. The changes returned from
the root of the UMV are changes relative to the underlying
store table. The propagator 904 knows how to propagate
changes through relational nodes in the UMV (SPUOIJ
operators):

Inner join and left outer join
Projection

Selection (filter)

Union all

Changes are stored in the ChangeNode structure as they
propagate. There is a change node for every relational
(SPUOI) node in the UMV. Note that values are flagged as
they propagate to allow maintenance of context for server-
generated values, the entity cache, and for “unknown”
values.

The result of propagation is a set of ChangeNode struc-
tures expressed in store terms (a ChangeNode per affected
table). We merge the inserts and deletes in these structures
based on the primary key of the table using the
TableChangeProcessor utility class.

Values propagating through the stack must be tagged with
some additional information in order to facilitate error
reporting and to adjust behavior. The following structure
may be used to describe a particular value in the pipeline:
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internal struct RecordMarkup

internal PropagatorFlags Flags { get { return m_ flags; } }

internal CacheEntry CacheEntry { get { return m__cacheEntry;
Py

internal int Ordinal { get; }

internal RecordMarkup Parent { get; }

}

In one embodiment, flags have the following definition:

/// <summary>

/// Tracks roles played by a record as it propagates
/// w.r.t. an update mapping view.

/] </summary>

[Flags]

internal enum PropagatorFlags : byte

//] <summary>

/Il No role.

/1] </summary>

NoFlags,

//] <summary>

/// Value is unchanged. Used only for attributes that appear
in updates (in other words, in both delete and insert set).

/1] </summary>

Preserve,

//] <summary>

/// Value is a concurrency token.

/1] </summary>

Concurrency Value,

//] <summary>

/// Value is a key within some extent.

/1] </summary>

Key,

//] <summary>

/// Value is unknown. Used only for attributes that appear
in updates (in other words, in both delete and insert set).

/1] </summary>

Unknown,

Thus, in one embodiment, the pipeline 113 illustrated in
FIG. 1 takes a description of data modifications to a model,
such as the model used by in-memory Common Language
Runtime (CLR) objects, and determines modifications to
apply to a target, e.g. a persistent data store like a database
server. Modifications are propagated (or translated) from the
model to the target using a mapping description. The map-
ping description is in the form of a “view” which declara-
tively expresses the relationship between the store and the
target using relational and non-relational operators.

Generally speaking, the modification propagation per-
formed by an update pipeline is performed using incremen-
tal view maintenance techniques. More specifically, embodi-
ments of an update pipeline may account for a number of
considerations, such as: 1. View maintenance is advanta-
geously performed in response to modifications to an under-
lying store. In embodiments of a mapping solution, there
may be no physical representation of the model, but rather
of the target. 2. In existing commercial systems like SQL
Server, view maintenance is performed over highly con-
strained views. The views supported by the pipeline may be
more flexible since the mappings required of a solution can
be complex. 3. Current view maintenance techniques reason
about inserts and deletes. In contrast, the pipeline may
advantageously reason in terms of updates. 4. Not only data,
but behaviors such as concurrency validation must be trans-
lated from the model to the target.

Embodiments of an update pipeline may accommodate
for the above considerations using view maintenance rules
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that describe how values are translated from model to target
given a mapping view. While these rules can be complex,
different constraints on supported mappings allow optimi-
zations to those rules.

In one embodiment, for example, view maintenance rules

28
Rule
1(T)=Project ,(I(M))
D(T)=Project ,(D(M))
Delta Expression Rules

. 5 This section lists exemplary rules that may be used for
have the following form: . . . .

- : modification propagation. The following operators are used
for a particular view operator, i the vi £ thi le: Goin. fil . oin. lefi
given input modifications and pre-existing data, n t € VIews o t.1s example: join, hilter, project, join, leit
produce output modifications. outer join and union. N )

By successively applying rules for each operator in a 0 All joins (natural, left, outer, anti) in delta expressions are
mapping view, modifications are mapped from the model to based on the join criteria for the update view. The goal of the
the target. delta expression rules is that:

_ For instance, a rule for the “projection” operator may be d(V) is a subset of V: don’t try to delete something that
implemented as follows: doesn’t exist.
s (V) has an empty intersection with V: don’t try to insert
Operation T = Project,(M) // projection A of model M — target T Somethlng that is already the,re' .
Given Based on the first two requirements, we can also infer that
I(M) // elements inserted into M d(V) and i(V) are non-overlapping.
D(M) // elements deleted from M There are different versions of each rule based on different
M // actual values in model . e e ce
Rule 5o assumptions. For each optimization level (1=traditional
I(T) = Project ((I(M)) — Project (M) view maintenance, 2=insert/delete/update compatible,
D(T) = Project (D(M)) — Project (M — D(M)) union 3=insert/delete compatible, 4=serializable C modification
M) requests only) certain assumptions are made. Details of
these assumptions for each optimization level are provided

The “pre-existing data” input to any rule can be problem- 55 in the chart below.
atic for a mapping solution, because the pre-existing model In some cases (indicated by a highlighted cell in the chart
data may have no straightforward physical representation. In below) the requirements are slightly weaker.
one view maintenance solution, pre-existing data may be d(V) is still a subset of V
available in a physical table. In one exemplary entity frame- i(V) x d(V) has an empty intersection with V: don’t try to
work embodiment, the pre-existing data is taken from the 3, insert something that’s already there unless performing an
entity model, which is itself a view of the physical table. update (there’s an insert and a delete for a row with that key.)
While technically feasible, the cost of retrieving model data Note that in this exemplary embodiment, we don’t impose
(which must be mapped in the reverse direction via the the stronger requirement that i(V) has an empty intersection
Query Pipeline) may be prohibitive. with d(V). There are cases where an entity is split across

Given certain mapping constraints, we can prove opti- 35 multiple tables, and we end up updating all of those tables
mized rules eliminating the pre-existing data input terms. even if the projection excludes that table.

For instance, the projection rule can be optimized as follows: The following legend applies to the table below:
Mapping Rule with Assumption
View Rule with Assumption Rule with Rule with Assumption Level 4
Operation Level 1 Assumption Level 2 Level 3 Only S Only T

Insert: i(V)
0,(8) 0,(i(8)) Same as Level 1 Same as Level 1 Same as Level 1
selection The inserted tuples are
subject to the same
selection.
74(S) 74(i(S)) - 74(S) 74i(S)) 74(i(S)) 74(i(S)) n/a
projection Since projection does Due to the key- Same as Level 2.
not preserve keys, preserving assumption
7,4(i(S)) and 7,(S) may  7,(i(S)) and 74(S) do
intersect. Existing not intersect. Therefore
tuples should not be the subtraction may be
inserted. Therefore removed.
those have to be
excluded.
Sedl (S"7ed(T)) U, Same as Level 1 (S™4d(T)) U,y na
join (i(S)»<L™™) (i(S)(T Xd(T)))
The intersection
between the two
operands in Level 1 is
i(S)»4(T). Remove it
from the second
operand.
SUT is)-nu i(S) Uy i(T) i(S) Uy (T) i(s) i(T)
union i) - 8) Due to the assumption Same as Level 2. Tuples are Tuples are
Added tuples are split that S and T are added only  added only
into the “added to S” disjoint, "¢ and T*®” to S. to T.

and “added to T”. In
general i(S) and i(T)

are also disjoint.
Therefore i(S) is
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-continued
Mapping Rule with Assumption
View Rule with Assumption Rule with Rule with Assumption Level 4
Operation Level 1 Assumption Level 2 Level 3 Only S Only T
may intersect. disjoint with T, i(T) is
disjoint with S, and i(S)
is disjoint with i(T)
Seq, T i(S)pe, T™™ U Same as Level 1 (1(S)pe i(T)) Uy i(S)pe, T (SP<(T))
semi-join (S"ee<i(T)) U (S7e4(T)) U, Tuples are Ui
(left) (S - d(8))es, (((S Kd(S)ye added only  ((S>q.
@(T) X)) X {D7}) d(T) X {D7}) 0 . @)X
A new row is inserted Optimizations are based i(T)) X
into the result view in on the fact that an {Ds})
one of three cases element T cannot exist Tuples are
represented by the independent of S in our added only
above union: there is a model. to T.
new element S: a new
element T, or; an
existing (not deleted) S
with a removed T (not
inserted).
Delete: d(V)
0,(8) 0,(d(8)) Same as Level 1 Same as Level 1
selection The deleted tuples are
subject to the same
selection.
74(S) T4(d(8)) — 74(S7) 7,4d(S)) 74(d(8)) 74(d(8)) a
projection Since projection does Due to the key- Same as Level 2.
not preserve keys, preserving assumption
74(d(8)) and mwy(S™™) 7 (d(S)) and 7,(8")
may intersect. The do not intersect.
intersection consists of ~ Therefore the
touples that shoud not subtraction may be
be deleted removed.
Sedl (Sed(T)) U Same as Level 1 (Se<d(T)) U,y na
Join d(S)>T) (d(8)>«(T Xd(T)))
The intersection between
the two operands in
Level 1 is d(S)»<d(T).
Remove it from the
second operand.
SUT d(s) - T U d(S) U, d(T) d(S) U, d(T) d(s) d(T)
union d(T) - S"™™) Due to the assumption Same as Level 2. Tuples are Tuples are
Deleted tuples are split  that S and T are deleted only deleted only
into the “deleted from disjoint, S™ and T™" from S. from T.
S” and “deleted from are also disjoint.
T”. In general d(S) and  Therefore d(S) is
d(T) may intersect. disjoint with T, d(T)
is disjoint with S,
and d(S) is disjoint with
d(T).
See T d(S)p4, Y U Same as Level 1 d(S)re, T U,y d(S)»>4 T (Sr<d(T))
semi-join (S»d(T)) U (SXA(S))»<d(T)) Tuples are Ui
(left) (S - d(SHXUT K Ui deleted only  ((S X(i(T)
) X {Dr}) (((SKd(8)) Mi(T)) X from 8. Xd(T)) X
An existing row is {Ds}) {Ds})
deleted from the result Optimizations are based Tuples are
view in one of three on the fact that an deleted only
element T cannot exist from T.
cases represented by the independent of S in our
above union: there is a model.
deleted element S;
deleted element T, or;
an existing (not deleted)
S with an existing T (not
deleted).
Legend:

K: anti-semijoin

{D,}: null extended row for §
Uy union with duplicates (UNION ALL)

grew

= (S = d(8)) Ui(S) — oprimizea (S Bdl($)) Uz i(S)

§™=§ Kq(s)

65 constraints on the mappings. Rules may also be defined for
several standard relational operators such as projection,
selection, union, inner join, and left outer join.

Optimization Level Assumptions
In one embodiment, an update pipeline may utilize four
“levels” of optimization based on different assumptions and
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Level 2 assumptions are compatible with all insert,
deletes and updates (expressed as inserts and deletes) in the
pipeline. Level 3 assumptions are compatible only with
inserts and deletes. Level 4 assumes we only get modifica-
tion requests for a single C-Space extent at a time.

Level 1:

S, d(S) and i(S) are sets (every record is unique)
Level 2 (includes level 1):

All joins are foreign key based

All base relations have key

All projections preserve key

All relations participating in union are disjoint and have
at least one disjoint key

d(S) is a subset of S

T, (I(S)X'S)) is a subset of m,,, (d(S)). In other words,
we never attempt to insert an existing record key unless
we’re also deleting it (in other words, updating it).

Level 3 (includes level 1 and 2):

i(S) is key disjoint with S (corollary: i(S) and d(S) are key
disjoint)

Level 4 (includes level 1, 2, and 3):

We will never get deltas from more than one extent at a
time. (This disqualifies natural joins altogether).
Explanation of optimizations

In this document, the correctness of optimization level 1
rules is assumed.

1. Projection: mt,(i(S))-r,(S)—=m,(i(S)), Level 2

This is based on the key preservation assumption, the
“duplicate key inserts are actually updates” assumption, and
the relaxed requirement.

2. Projection: wt,(i(S))-m,(S)—,(i(S)), Level 3

Since projections preserve keys and i(S) and S are key
disjoint, no element of 7, (S) is in S.

3. Optimized S™" expression: (S-d(S))\Ji(S)—(S
X d(S)) U4 i(S), Level 2 assumptions, Level 3 requirements

S-d(S)—=S K d(S):d(S) is a subset of S (Level 2 assump-
tion)

(Sx dEYVi(S)—=>(Sx d(S)) Uy i(S)i(S) and S x d(S)
are key disjoint

4. Join: (A(S)PT"™)UJ (8™ pai(T))—(S""><i(T))
Ua (i(S)>< (T X d(T))), Level 3

Given level 3 assumptions, the two expressions are actu-
ally equivalent. Each side is a subset of the other. First, we
determine that the optimized expression produces no dupli-
cates:

S7e*>di(T) has distinct rows based on key preservation
and key disjoint-ness.

1(S)> (T d(T)) has distinct rows based on same.

The two union terms are mutually key disjoint because the
right hand terms in the join are key disjoint.

Now we show that the optimized rule is a subset of the
original rule:

1(S)>AT"™) is a common term, so it suffices to demon-
strate that (i(S) >< (T > d(T)) is a subset of i(S)>IT"**=((S)
>A((T i d(T))Uy i(T)) (which is trivially true).

Finally, we show that the original rule is a subset of the
optimized rule:

(1(S)><T"™) is a common term, so it suffices to demon-
strate that (i(S)> (TXdA(T)) v, i(T)) is a subset of ((S
K A(S)) U i(S)>i(T)) Uy ((S)P (T d(T)))  (which s
trivially true).
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Level 5 Optimizations

We introduce these optimizations in a separate section
because their exposition is different.
Legend

*=join

* =left outer join

+=union

+,;7~union all

[[E]]=artificial expansion of an extent across a join. For
every term on the other side of the join, introduces a value
with the expected key and extended with “unknown” place-
holders. If the expected key is not available (e.g., the right
hand side of an LOJ), all expansion is with “unknown”.

X=Cross join

I(E)=insert set for an extent

D(E)=delete set for an extent

{D.}=null expansion of an extent

—=antisemijoin

<=semijoin
Level 5 Assumptions:

Level 1 and 2 assumptions, and:

Given a mapping fragment between extent E and table T,
the key of E must be unique in T. In practice, we assert that
the key of E has fields that are a superset of the keys of T.

The key for a relationship set extent is the composite key
of the extents referenced by the relationship. For a compo-
sition, it is the key of the composition element plus the keys
of all parent extents.

This new assumption ensures that a join will never
produce more rows than contained in the left hand side (and
each left hand row will join with at most one right hand
row).

Goals:

Remove all references to the extents in the propagation
rule.

Correctness.

The key is to substitute placeholders ([[E]]) for these
references and demonstrate that they always cancel out
when merging inserts and deletes into updates.
Optimizations:

The level 2 union, projection, and selection rules already
satisfy our goals, so there is no need to exploit the additional
constraint.

Join V=S*T

The delta propagation rules given level 1 and level 2
optimizations:

IV)=(((S-D(S))+all 1(8)*(D)+IS)*(T-D(D)) +all
1)

DV)=(S*D(D)+D(S)*T)

Given our assumptions, we illustrate for all legal combi-
nations of input deltas and the reduced rules. Notice that
each entry in the matrix describes a set of modifications
referencing a single entity (or extent member) and directly
related Delta propagation rules for level 5 optimization:

S and T deltas

D(S) + I(S) (updating

related by key an extent) D(S) 1I(S) neither

D(T) + I(T) I(V) = 1(8) * [(T) vy={} vy={} IV) = [[8]] * K(T)
D(V)=D(S) * D(T) D(V)={} DV)={} D(V) = [[8]] * D(T)

D(T) Iv)={} Iv)={} Iv)={} Iv)={}
DWV)={} D(V) =D(8) * D(T) D(V) = { } DWV)={}
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-continued

S and T deltas  D(S) + I(S) (updating
related by key  an extent) D(S) I(S) neither
T) Ivy={} Ivy={} IV)=I18)*IT) IV)={}

DV)={} DV)={} Dv)={} DV)={}
neither IV) =1(8) * [[T]] Ivy={} Ivy={} Ivy={}

D(V)=D@®) *[[T]] DWV)={} Dv)={} DV)={}
Explanations of Reductions. Updating S<nothing, {I(S), D(S)}>

Inserting both sides<I(T), I(S)>, I(V)=I(S)*I(T),

D)= }

I(V) = ((S = D(8)) +all I(8)) * I(T)) + (I(S) * ((T - D(T)) +all (T)))
-- Original form

= ((S +all I(S)) * I(T)) + (I(S) * (T +all I(T)))
-- Remove empty elements

= (I(S) * I(T)) + (I(S) * I(T)) - I(S) joins I(T) (given that each S can

join with at most one T)

= IS) * [(T) ~“A+A=A
D(V) = (S * D(T)) + (D(S) * T) - Original form
DV)={} -- Removing empty elements

Deleting both sides<D(T), D(S)>, D(V)=D(S)*D(T),
IV)={ }

15
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25

I(V) = (S - D(8)) +all I(8)) * I(T)) + (I(S) * ((T - D(T)) +all (T)))
-- Original form

=I(S)*T -- Removing empty elements
D(V) = (S * D(T)) + (D(S) * T) - Original form
=DES)*T -- Removing empty elements

Updating T<{I(T), D(T)}, nothing>
Same demonstration as above.
Left outer join V=S*T
Propagation rules given level 1 and 2 optimizations:

I(N)=(S)*1 Thew )+(Snew*i(1)+(((S-D(S))<D(D)-
Tnew))x{DT?})

DN=(DESY*L DHS*D(D))+{((S-DS)H<UT)-T))x
{p1)

Propagation rules given level 5 optimizations:

S and T deltas

D(S) + I(S) (updating an

related by key extent) D(S) I(S) Neither
D(T) + I(T) I(V) =1(8) * (T) Ivy={} Ivy={} IV) = [[81] * KT)
D(V) = D(S) * D(T) DV)={} DV)={} D(V) = [[8]] * D(T)
D(T) I(V) =I(S) x {Dr} Iv)={} Iv)={} I(V) = [[81] x {D}
D(V) = D(S) * D(T) D(V)=D@)*D(T) DV)={} D(V) = [[8]] * D(T)
D) I(V) =1(8) * (T) Ivy={} IV) =19 * [T) V) =[[8]] * I(T)
D(V) = D(S) x {D7} DWV)={} DWV)={} D(V) = [[81] x {Dg}
neither IV) =1(8) * [[T]] Iv)={} IV) =I68) x {D7} IV)={}
D(V) = D(S) * [[T]] D(V)=D@) x {D7} D(V)={} DWV)={}

D(V)=(S* D(T)) + (D(S) * T) -- Original form

= (8 - D) + D)) * D) + (DE) * (T - D(T) + D(T)))
- D(S) is a subset of S

= (D(S) * D(T)) + (D(S) * D(T)) -- A row in S can join at most one

row in T, D(S) joins with D(T)

= D(S) * D(T) ~A+A=A

IV) = (8 = D(8)) +all I(S)) * I(T)) + A(S) * ((T - D(T)) +all I(T)))
-- Original form

{} -- Removing empty elements

Updating both sides<{D(S), I(S)}, {D(T), I(T)}>, I(V)=1
(S)*I(D), DV)=DE)*D(D)

I(V) = (S = D(8)) +all I(8)) * I(T)) + (I(S) * ((T - D(T)) +all (T)))

-- Original form

= (I(S) * I(T)) + (I(S) * I(T)) - Level 2 assumption: I(S) key

intersects S only if I(S) in D, and;
- I(S) joins I(T)

=IS)*IT)-A+A=A

D(V) = (8 * D)+ (DE) *T) -

= (D(S) * D(T)) + (D(S) * D(T)) -

D(T)

=DE)*D(T)--A+A=A

Original form
D(S) is a subset of S and D(S) joins

45

50

55

60

65

In these tables, all [[E]] entries either include the key for
the table (based on the assumptions) or the other half of the
join contains the key for the table (again, based on the
assumptions). Whenever such an entry appears in an insert,
there is a corresponding delete for that row. This means we
have sufficient information to perform an update (key+

changed values).
Explanation of Optimizations:

Delta propagation rule (level 1+2 optimization):

I(V) = (I(S) *] Tnew) + (Snew * i(T)) + (((S = D(S)) < (D(T) - Tnew)) x
{DTh)
D(V) = (D(S) *I T) + (S * D(T)) + (((S - D(8)) < ((T) - T)) x {DT})

Updating both sides<{D(S), I(S)}, {D(T), I(T)}>, I(V)=1
($)*I(T), D(V)=D(S8)* IXT)



US 9,430,552 B2

35

36

I(V) = (I(S) *| Tnew) + (Snew *
-- Original form
I(S) *1 Tnew --> I(S) * I(T)
(D(T) - Tnew) --> { }
IV) =S * L) +AS) * D) + { }
-- Applying reductions 1 and 2
=I(S) * I(T) ~A+A+{}=A
D(V) = (D) *L'T) + (S * D(T) + (((S - D($)) < (I(T) - T)) x {DT})
-- Original form
D(S)*1 T -->D(S) * D(T) --
(T) - T —>{}~
-- D(T) is a subset of T
D(V) = (D(S) * D(T)) + (D(S) * D(T)) +{}
1+R2

= D(S) * D(T) A+A+{} A

-- Reduction 1: I(S) joins I(T) by definition
-- Reduction 2: there is a corresponding I(T) for D(T)

(1)) + (S = D($)) < (D(T) - Tnew)) x {DT})

R1: the row of T that joins with S is in D(T)
R2: every I(T) has a corresponding D(T), and;

Updating S and deleting T<D(S)+1(S), D(T)>

15

I(V) = (I(S) *| Tnew) + (Snew *
-- Original form

I(V) = (I(S) *1 Tnew) + (((S - D(8)) < (D(T) - (T - D(T))) x {DT})
-- Remove empty elements

= IS) x {DT}) + ((8 - D(8)) < (D(T) - (T - D(T))) x {DT})

(1)) + (S = D($)) < (D(T) - Tnew)) x {DT})

-- I(S) joins with nothing in Tnew (removing that single row)

=1(S) x {DT}
corresponding D(S)
D(V) = (D) "1 T) +(8* D(T)) +(((S - D($) < (IT) - T)) x {DT})

Ongmal form
D(S) *1 T --> D(S) * D(T)
1) - T->{ }

-- D(T) is a subset of T
D(V) = (D(S) * D(T)) + (D(S) * D(T)) I:Z{ }

1+

= D(S) * D(T) A+A+{} A

-- (S = D(S)) < D(T) is empty because D(T) has a

- R1: D(S) has a counterpart D(T) which is a subset of T
-- R2: every I(T) has a corresponding D(T), and;

Updating S and inserting T<D(S)+I(S), I(T)>

I(V) = (I(S) *| Tnew) + (Snew *
-- Original form

I(S) * Tnew ->1(8) * I(T) --
I(T)

IV) =1S) * (T) - R1 + D(T) is empty

D(V) = (D) "1 T) +(8* D(T)) +(((S - D($) < (IT) - T)) x {DT})
-- Original form

D(S) *1 T --> D(S) x {DT}

I(T) - T->1IT)

(S -D() <KT)-->{}

D(V) = D(S) x {DT}

-- Every I(T) has a corresponding D(S)
-- R1 + R3 + D(T) is empty

(1)) + (S = D($)) < (D(T) - Tnew)) x {DT})

R1: There is a counterpart to I(S) in

-- R1: We’re inserting the T corresponding to D(S)
-- R2: e can’t insert something that’s already there

Updating S<D(S)+I(S), nothing>

Deleting S<nothing, D(S)>

I(V) = (I(S) *| Tnew) + (Snew * i(T)) + (((S = D(S)) < (D(T) - Tnew)) x
{oT)

-- Original form
=I(S)*I T -- Removing empty elements

D(V) = (D) *LT) + (S * D(T) + (((S - D(S)) < (I(T) - T)) x {DT})
-- Original form

=D(S) *IT -- Removing empty elements

Deleting S and deleting T<D(T), D(S)>

I(V) = (I(S) *| Tnew) + (Snew *
{pT}h)

i(T) + (S = D(8)) < (D(T) - Tnew)) x

-- Original form
(S=-D(S)) <D(T) -->{} -- R1: Every D(T) has a corresponding D(S)
IV)y={} -- Removing empty elements and R1

D(V) = (D) *LT) + (S * D(T)) + (((S - D(S)) < (I(T) - T)) x {DT})
-- Original form

-- R1: D(S) has corresponding D(T) (in T)
-- R1 + removing empty elements

D(S) *1 T -=> D(S) * D(T)
D(V) = D(S) * D(T)
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I(V) = (I(S) *| Tnew) + (Snew *
{pT}h)

i(T)) + (((S = D(S)) < (D(T) - Tnew)) x

-- Original form
{} -- Removing empty elements
D(V) = (O®) *LT) + (S * D(T)) + (8 - D(S)) < (I(T) - T)) x {DT})
-- Original form
-- Removing empty elements
-- Can’t delete S if there’s a corresponding T

D(S) *1 T
D(S) x {DT}

Inserting S and T<I(T), I(S)>

I(V) = (I(S) *| Tnew) + (Snew *
{pT}h)

i(T)) + (((S = D(S)) < (D(T) - Tnew)) x

-- Original form
I(S) *] Tnew --> I(S) * (T)  -- R1: There is a corresponding I(T)
IV) =1(S) * (T) - R1 + removing empty elements
D(V) = D(8) "1 T) + (8% D(T)) +(((8 - D(8) < (UT) - T)) x {DT})
-- Original form
={} -- Removing empty elements
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Inserting S<nothing, I(S)>

I(V) = (I(S) *1 Tnew) + (Snew * i(T)) + (((S - D(S)) < (D(T) - Tnew)) x
{pT}h)
-- Original form
=I(S)*I T -- Removing empty elements
=1(S) x {DT} -- T can’t exist before there’s an S
D(V) = (D) *LT) + (S * D(T) + (((S - D(S)) < (I(T) - T)) x {DT})
-- Original form
={} -- Removing empty elements

Updating T<D(T)+I(T), nothing>

I(V) = (I(S) *| Tnew) + (Snew * i(T)) + (((S = D(S)) < (D(T) - Tnew)) x
{pT}h)

-- Original form
D(T) - Tnew --> { } -- R1: every D(T) has a corresponding I(T)
IV) =S * IT) -- R1 + removing empty elements
D(V) = (D) *LT) + (S * D(T) + (((S - D(S)) < (I(T) - T)) x {DT})

-- Original form
M -T->{} -- R1: Every I(T) has a corresponding
D(T)in T

D(V) =8 *D(T) -- R1 + removing empty elements

Deleting T<D(T), nothing>

I(V) = (I(S) *| Tnew) + (Snew * i(T)) + (((S = D(S)) < (D(T) - Tnew)) x
{pT}h)

D(T) - Tnew --> D(T)
()
S < D(T) --> S * D(T)

-- Original form
-- R1: D(T) is not in Tnew (no corresponding

-- R2: there is a corresponding S for D(T)
(constraint)

S x {DT} -- R3: R2 + existence of related S
for D(T)

I(V) = S *x {DT} -- R1 + R2 + removing empty elements

D(V) = (D) *L'T) + (S * D(T) + (((S - D(S)) < (I(T) - T)) x {DT})
-- Original form

-- Removing empty elements

S * I(T) x {DT}-->

=S *D(T)

Inserting T<I(T), nothing>

I(V) = (I(S) *| Tnew) + (Snew * i(T)) + (((S = D(S)) < (D(T) - Tnew)) x

{oT)
-- Original form

=S *i(T) -- Removing empty elements

D(V) = (D(S) *I'T) + (8 * D(T)) + (((S - D(S)) < (I(T) - T)) x {DT})

-- Original form

-- Removing empty elements

-- I(T) has a corresponding S (constraint)

S <I(T) x {DT}
S x {DT}

Database (Store) Operations

The store may be configured to have the ability to
generate values for certain columns either when a row is
inserted or when a row is updated. The following scenario
illustrates the important concepts for the handling of server-
generated values in the store.

Consider the following store schema:

create table SPersonl(
pid int identity(1,1) primary key, -- server generated key
name nvarchar(512),
ts timestamp, -- server generated timestamp
added__date datetime default(getdate( )) -- server generated
detail

)

create table SAddress1(
aid int identity (1,1) primary key,
city nvarchar (512),
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-continued

pid int references SPersonl(pid)

)

To add a person and his address, we can use the following
T-SQL commands:
declare @pid int
insert into SPersonl(name) values (‘CMeek’)
select @pid=scope_identity( )
insert into SAddress1(city, pid) values (‘Seattle’, @pid)
These DML statements result in something similar to the
following:

pid  name ts added__date
1 1 CMeek 0x00000000000007D1 2006-05-10 13:06:13.310
aid city pid
1 1 Seattle 1

This is a useful illustration of server-generated values:

Server-generated keys can influence subsequent opera-
tions within a single update payload. In this example, we use
@pid to determine the value of the foreign key for the
related address.

Some values can only be generated by the server and not
modified.

Some values are fixed for the lifetime of a row.

Some values are generated when the row is inserted.

Some values are regenerated when the row is updated.

In the above example, columns have the following behav-
iors:

SPersonl.pid Yes Yes Yes Yes
SPersonl.name

SPersonl.ts Yes Yes Yes
SPersonl.added_ date No Yes
SAddress1.aid Yes Yes Yes Yes

SAddressl.city
SAddress1.pid

Server generation flags may also be usefully imple-
mented. The above categories can be generalized, so that a
store column is described using a combination of the fol-
lowing flags:

1=Unmodifiable (1|]2|]3)

2=GeneratedOnUpdate (5)

4=GeneratedOnlnsert (4)

If a column is marked “Unmodifiable”, we fail if the
property is marked “modified”by the cache. If a value is
marked GenerateOnUpdate or GenerateOnlnsert, we
retrieve and back-propagate the value when performing
updates or inserts respectively.

In one embodiment, values in the update pipeline are
associated with a “RecordMarkup” object, which provides
sufficient context for the back-propagation of values to the
appropriate fields in the cache entries volunteering those
fields. The back-pointer in the markup has two components:

1. The ordinal of the field in the record.

2. In the case of nested records (e.g., for complex types),
a pointer to the parent markup.

Values extracted from relationship refs do not have back-
pointers, since keys are immutable (except in the special
case of server-generated keys, which are transitively fixed
up by the cache).
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Additional state may be required to track server-generated
keys: values that are generated and shared across extents. We
use a simple strategy to determine how values are shared:
before propagation, we tag entity key property values with
identifiers that are global to the context. When propagation
is complete, we use these identifiers to determine which
DML statement parameters are shared (consider this “side-
propagation” of server gen keys) and which parameters
introduce ordering dependencies. An input parameter with
global identifier x must precede output parameters with
global identifier x.

Thus, in summary, a modification payload may be propa-
gated through predicates and relational operators. The modi-
fication payload includes data, concurrency control data, and
modification details.

Ordering

Store ordering 905 may be conducted next. Store con-
straints and model dependencies constrain the order in
which operations can be applied in the store. For instance,
we must insert an order detail before an order given a foreign
key constraint between two tables. If key values are gener-
ated by the store (e.g., SQL Server identity columns), this
requires us to acquire the generated key before producing or
modifying records related to the key through either associa-
tions or entity splitting.

Once ordering 905 is complete, we have a list of store-
level delta expressions, where the ordering respects func-
tional dependencies of the rows being modified. A delta
expression is simply an expression (or query) describing
rows to be inserted or deleted in a specific table.

Some specific store capabilities or requirements can
change the handling of store ordering. For instance, the
ability to defer constraint checking until transaction commit
time can remove the need for ordering of any kind.

Layered dependency ordering for store changes can com-
prise coarse ordering based on table integrity constraints,
fine-grained ordering based on table row, and/or a hybrid
solution in which coarse ordering is performed to produce a
full dependency graph, then fine-grained ordering is per-
formed for decomposition of the remainder.

When updates are submitted to the backend databases,
they need to be applied in a certain order so that the database
constraints are not violated during the update process. For
example, if there is a foreign-key constraint between two
tables SPerson and SAddress, we need to ensure that if an
address is inserted into SAddress, the corresponding person
must exist. To ensure that we do not violate primary key,
unique key and foreign key constraints during the update
process, we perform a dependency analysis to determine the
appropriate order. The SQL standard allows constraint
checking to be disabled until the transaction commit call is
made but most databases including SQL Server do not
support this feature; instead they perform constraint-check-
ing eagerly.

In one embodiment, an algorithm may be run at compile
time that determines the partial order for operations on
different relations; this algorithm can generate a dependency
graph with operations on tables as nodes and an edge is
placed from nodes A to B if A needs to be done before B,
e.g., an edge from Insert(SPerson) to Insert(SAddress) says
that an insert into SPerson needs to happen before we
perform the insertion on the SAddress relation. This depen-
dency graph information is stored in the metadata repository
so that it can be used during the runtime execution.

Note that it is possible that a cycle exists in the depen-
dency graph such that there is no order in which the changes
can be applied. If such circular dependencies were allowed
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in the database, we would allow cyclic dependency graphs
during the compilation process—at runtime, if no total order
can be determined, we abort the transaction. This approach
is based on the premise that even though a cycle exists at
compile-time, it may not exist at runtime since some of the
relations in the cycle may not have any updates.

The outcome of this stage is the same as for delta
propagation is an ordered list of<op, table> pairs, indicating
(for instance) that inserts into SPerson should precede
inserts into SAddress.

Server-generation dependencies may be dealt with as
follows. When extracting records from the cache, we anno-
tate all key values with global identifiers (Int64 auto-
increment within the session). In the case of a composite
key, each key element has its only global identifier. As
commands are compiled, we identify server generated col-
umns from the metadata service. If one such column takes
a value tagged with a global identifier, we register depen-
dencies from the operation producing the global identifier to
all operations consuming the global identifier.

Given a series of store level change requests (ChangeNo-
des in store terms), method may be used, which comprises
first producing a dependency ordering graph, where each
node is a tuple describing the operator (Insert, Delete or
Update) and extent. Based on the above matrix, we intro-
duce dependency arcs into the graph. To determine a valid
ordering, we simply perform a topological sort on the graph.
By performing a destructive sort (which removes all ele-
ments for which there is an ordering), we can determine the
remaining dependency work by examining the remaining
nodes in the graph (these nodes may contain cycles). We
decompose the remaining nodes into row level operations,
and repeat the process based on row level dependencies. For
instance, in the first phase we might determine that it is
possible to insert all managers before their employees,
assuming managers and employees have separate tables. If
managers and employees live in the same table, there that
table has a self ordering constraint, so the node needs to be
decomposed into individual rows.

Completion

Finally, completion 906 is performed to complete the
update. This may involve confirming that the update was
appropriate and accurately executed, and ending the process
so as to move on to other tasks.

The update pipeline is preferably configured to produce
minimal store changes. Commands may be configured to
touch only data that was explicitly modified by user (includ-
ing data affected through predicates). Inserts and/or deletes
in entity space can become simple updates in the data store.
Updates in entity space can become either inserts or deletes
in the data store. Propagation of incomplete data can be
handled so as to identify unknown data that can “cancel out”
in updates.

FIG. 12 illustrates one embodiment of an update pipeline
as described herein. FIG. 12 provides a control flow diagram
that a variety of scenarios. The arrows in FIG. 12 mean
invocation after which control is returned back to the caller.
Input and output are placed in ellipses. Input is marked with
an angle bracket pointing the same direction as the control
flow, while output is marked with an angle bracket pointing
the opposite direction of the control flow.

In FIG. 12, an update extension component 1200 is
provided that may reside on a client or on a server associated
with data store 1230. The update extension component 1200
comprises components as illustrated in FIG. 9, e.g., an
extraction component 1202, a grouping component 1203, a
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propagation component 1204 and an ordering component
1205. Also, a compensation component 1202a is illustrated.

An update pipeline component 1210 may reside on a
server associated with the data store 1230. This component
1210 comprises a map adapter component 1211, map com-
mand component 1212, and provider bridge command com-
ponent 1213. Functions of the update pipeline component
1210 can be called, e.g., by the update extension 1200, using
the illustrated function calls. The query extension compo-
nent 1220 can comprise a CQL parser component 1221 and
a Structured Query Language (SQL) Generation component.

FIG. 13 illustrates a high level view of one embodiment.
Many aspects of FIG. 13 are described above and should be
familiar from reading the various described embodiments
already provided. In general, FIG. 13 illustrates a method for
providing data services to an application, and may also
reflect instructions on computer readable media or subsys-
tems included in a data access system as described herein.

FIG. 13 illustrates first extracting application data from a
client computer cache 1301. Extracted data comprises appli-
cation data modifications that are to be persisted to the store.
Receiving, by a data access system, application data modi-
fications 1302, is accomplished by virtue of performing the
extracting, but may also be accomplished by receiving data
that is “pushed” to the data access system by an application.
Advantageously, application data modifications are
expressed according to an application schema, so applica-
tions do not have to do the work of converting data to
database format.

The method next comprises selecting an optimization
level 1303, as described above, then utilizing incremental
view maintenance 1304 to translate the application data
modifications into relational database modifications
expressed according to a database schema. Here, utilizing
view maintenance 1304 comprises applying at least one
view maintenance rule 1305 that specifies a view operator,
and given the application data modifications, produces the
appropriate relational database modifications. Theview
maintenance rule may comprise, for example, an insert rule
selected from a group comprising a selection rule, a projec-
tion rule, a join rule, a union rule, and a semi-join rule.
Alternatively, the view maintenance rule may comprise a
delete rule selected from a group comprising a selection rule,
a projection rule, a join rule, a union rule, and a semi-join
rule.

In one-embodiment, the view maintenance rule may be
given pre-existing data, in order to facilitate the translation,
as described above. The version of the rule that is applied,
and the type and amount of pre-existing data that is required,
may be affected by the optimization level. As discussed
above, the various optimization levels may include a tradi-
tional view maintenance level, an insert/delete/update com-
patible level, an insert/delete compatible level; and a modi-
fication requests only level.

Finally, a relational database 1306 is updated with the
relational database modifications that are produced.

In addition to the specific implementations explicitly set
forth herein, other aspects and implementations will be
apparent to those skilled in the art from consideration of the
specification disclosed herein. It is intended that the speci-
fication and illustrated implementations be considered as
examples only, with a true scope and spirit of the following
claims.

Insert Example
Store:
create table SPerson(pid int primary key, name nvarchar

(255))
create table SAddress(aid int primary key, pid int references
SPerson(pid), state nchar(2))
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EDM:

EntityType EPerson<{int pid, string name}>Keys{pid;}

EntitySet CPerson<EPerson>

EntityType EAddress<{int aid, string state}>Keys{aid;}

EntitySet CAddress<EAddress>

Relationship RPersonAddress<EPerson, EAddress>(multi-
plicity one EPerson to many EAddress)

RelationshipSet CPersonAddress<RPersonAddress>

Update Mapping Views:

SPerson=SELECT p.pid, p.name FROM CPerson p

SAddress=SELECT pa.aid, p.pid, a.state FROM CAddress
a,

CPersonAddress pa

WHERE Key(pa.Address).aid=a.aid
Query Mapping Views:

CPerson=SELECT p.pid, p.name FROM SPerson p
CAddress=SELECT a.aid, a.state FROM SAddress a
CPersonAddress=SELECT a.aid, a.pid FROM SAddress a

Suppose that the CPerson entity set contains a person
whose name is “Joe” and has an address in “WA”. Suppose
that a new address is inserted for this person (state is “MA”).
This can be expressed in terms of insert and delete sets:

i(CAddress)={[a1d2, “MA”]}

i(CPersonAddress)={[aid2, pid1]}
d(CAddress)=d(CPersonAddress)=i(CPerson)=d(CPer-
son)={ }

We now consider the changes to SAddress; we do not
consider SPerson here since there is no change to it. The
delta expression for SAddress based on the delta expression
rules is (the delete set for SAddress is null):

i(SAddress)=

(i(CPersonAddress) JOIN ((CAddress—d(CAddress))
UNION
i(CAddress)))
UNION
(i(CAddress) JOIN ((CPersonAddress—d(CPersonAd-
dress)) UNION i(CPersonAddress)))

At this point, we substitute query views for remaining
C-level constructs:

i(SAddress)=

(i (CPersonAddress) JOIN ((Pr0],;, ssr(SAddress)—d
(CAddress)) UNION i(CAddress)))
UNION

(i (CAddress) JOIN ((Pro,,;;, ,:(SAddress)-d(CPer-
sonAddress)) UNION i(CPersonAddress)))

The update pipeline resolves the insertion query for the
SAddress table as follows:
i(SAddress)=

{[aid2, pid1]}LEFT OUTER JOIN ({[aidl, “WA”]}

UNION {[aid2, “MA]})
UNION
{[aid2, “MA”]}LEFT OUTER JOIN ({[aidl, pidl]}
UNION {[aid2, pid1]})
={(aid2, pidl, “MA”]} UNION {[aid2, pidl,
“MA”]}
={[aid2, pidl, “MA”]}
Self-Association Example

Consider the following EDM definition:

EntityType EEmployee<{int

name}>Keys{eid};

EntitySet CEmployee<EEmployee>;

Relationship REmployeeManager <EEmployee, EEm-

ployee>(Multiplicity many EEmployee to one EEm-
ployee; on delete EEmployee restrict);

This is represented in the store as follows:

CREATE TABLE SEmployee (eid int primary key, name

nvarchar(max), mid int references SEmployee(eid))

eid, string
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The following mappings are specified:

[<e type EEmployee> in CEmployee : SEmployee]

(e.eid, eid)

(e.name, name)
[<el type EEmployee> in CEmployee, <e2 type EEmployee> in
el.CEmployeeManager : SEmployee]

(el.eid, eid)

(e2.eid, mid)

Update View:

SEmployee=
SELECT el .eid, el.name, e2.eid
FROM CEmployee el

LEFT OUTER JOIN CEmployeeManager em ON
el.eid=em.eid]

LEFT OUTER JOIN CEmployee e2 ON
em.cid2=e2.eid WHERE type(el)=EEmployee
AND type(e2)=EEmployee

Consider the following snapshot of the store (Joe manages
John):

eid name mid
1 Joe NULL
2 John 1

Let’s say the cache identifies the following change sets:
I(CEmployee)={<3, Jane>, <4, Nancy>}
I(CEmployeeManager)={<3, 4>, <4, 2>}
After propagating these delta lists, we have:
I(SEmployee)={<3, Jane, 4>, <4, Nancy, 2>}
Depending on the store, there may be a problem if we
insert rows into SEmployee one at a time. SQL Server
enforces constraints on a per statement basis rather than at
transaction commit time. Inserting Jane before Nancy causes
a constraint violation:
begin tran
insert into SEmployee
values (3, ‘Jane’, 4)
insert into SEmployee
values (4, ‘Nancy’, 2)
commit tran
The INSERT statement conflicted with the FOREIGN
KEY SAME TABLE constraint
“FK_SEmployee_mid_1A14E395”. The  conflict
occurred in database “Test”, table “dbo.SEmployee”,
column ‘eid’.
In this case, we need to identify row level dependency
ordering constraints (to insert Nancy before Jane).
The alternative to intra-table dependency ordering is to
batch all operations per table:
insert into SEmployee
select 3, ‘Jane’, 4
union all
select 4, ‘Nancy’, 2
Now consider the following updates:
U(CEmployee)={<1, Joe>—<5, Joe>}
U(CEmployeeManager)={<2, 1>—<2, 5>}
After propagating these delta lists, we have:
U(SEmployee)={<1, Joe, NULL>—<5, Joe, NULL>, <2,
John, 1>—<2, John, 5>}
Again, the row-at-a-time translation causes a constraint
violation. We can rewrite as follows:
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declare @update__list table(

eid_ old int,

eid_new int, mid_ new int)
insert into @update__list values (1, 5, NULL)
insert into @update__list values (2, 2, 5)
update e
set e.eid = w.eid__new, e.mid = u.mid__new
from SEmployee e, @update__list u
where e.eid = u.eid__old

What is claimed:

1. A method for providing data services to an application,
comprising:

receiving, by a data access system, application data modi-

fications that modify instances of the application, the
application data modifications being expressed accord-
ing to an application schema;
extracting the application data modifications from a client
cache that are to be persisted to a relational database,
wherein the client cache is a cache operatively coupled
to a server associated with the relational database;

generating a mapping view that maps a relationship
between the application and the relational database, a
mapping of the mapping view being specified using a
declarative language and being compiled into bidirec-
tional views; and

utilizing incremental view maintenance to materialize

object instances that have changed in accordance with

the mapping to translate the application data modifica-

tions into relational database modifications expressed

according to a database schema for updating the rela-

tional database, utilizing incremental view mainte-

nance comprising:

applying at least one view maintenance rule that speci-
fies a view operator, and given the application data
modifications, produces the relational database
modifications;

identifying a minimum set of affected store tables in the
database based on a set of changed materialized
object instances;

identifying a minimum set of changes to a given store
table based on a set of changed materialized entity
instances based at least in part on an entity data
model;

generating a dependency graph based on the set of
changed materialized entity instances, wherein a
node of the dependency graph represents an opera-
tion on a table of the relational database of a set of
operations, and an edge in the dependency graph
indicates that there is a dependency between two
nodes connected by the edge, a dependency indicat-
ing that a first operation on the table relies on a result
of having already performed a second operation;

ordering the set of operations based on the dependency
graph; and

submitting the set of operations to the relational data-
base based on the order.

2. The method of claim 1, wherein the at least one view
maintenance rule is also given pre-existing data.

3. The method of claim 1, wherein the at least one view
maintenance rule comprises an insert rule selected from a
group comprising a selection rule, a projection rule, a join
rule, a union rule, and a semi-join rule.

4. The method of claim 1, wherein the at least one view
maintenance rule comprises a delete rule selected from a
group comprising a selection rule, a projection rule, a join
rule, a union rule, and a semi-join rule.
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5. The method of claim 1, further comprising:
selecting an optimization level.
6. The method of claim 5, wherein applying at least one
view maintenance rule comprises:
applying a version of the view maintenance rule corre-
sponding to the optimization level.
7. The method of claim 5, wherein the selecting an
optimization level comprises:
selecting the optimization level from among a plurality of
optimization levels, the plurality of optimization levels
requiring differing application data or relational data-
base data when utilizing the incremental view mainte-
nance.
8. The method of claim 7, wherein the plurality of
optimization levels comprise:
a traditional view maintenance level,
an insert/delete/update compatible level;
an insert/delete compatible level; and
a modification requests only level.
9. The method of claim 1, wherein generating the depen-
dency graph comprises:
while extracting the application data modifications from
the client cache, applying an annotation to a key value
that has a global identifier;
while compiling the set of operations, identifying that a
server that maintains the relational database has gen-
erated a column of a table that contains the key value
that has the global identifier; and
in response to identifying that the server that maintains
the relational database has generated a column of the
table that contains the key value that has the global
identifier, registering a dependency from an operation
producing the global identifier to an operation consum-
ing the global identifier.
10. The method of claim 1, wherein generating the
dependency graph comprises:
performing a topological sort on the dependency graph
and removing each element for which there is an
ordering to produce a remaining dependency graph;
decomposing at least one node of the remaining depen-
dency graph into at least two row-level operations; and
topologically sorting the at least two row-level operations.
11. The method of claim 1, wherein generating the depen-
dency graph comprises:
topologically sorting a plurality of nodes of the depen-
dency graph.
12. A data access system for providing data services to an
application, comprising:
a processor; and
a memory bearing instructions that, upon execution by the
processor, cause the system at least to:
receive application data modifications that modity
instances of the application, the application data
modifications being expressed according to an appli-
cation schema;
utilize incremental view maintenance to translate the
application data modifications into relational data-
base modifications expressed according to a database
schema for updating a database, wherein incremental
view maintenance further causes the system at least
to:
generate a dependency graph based on a set of
changed materialized entity instances in the incre-
mental view maintenance, wherein a node of the
dependency graph represents an operation on a
table of the relational database of a set of opera-
tions, and an edge in the dependency graph indi-
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cates that there is a dependency between two
nodes connected by the edge, a dependency indi-
cating that a first operation on the table relies on
a result of having already performed a second
operation;

order the set of operations based on the dependency
graph; and

apply the set of operations to the database based on
the order.

13. The system of claim 12, wherein the instructions that,
upon execution by the processor, cause the system at least to
receive application data modifications further cause the
system at least to:

extract the application data from a client computer cache.

14. The system of claim 12, wherein the instructions that,
upon execution by the processor, cause the system at least to
apply at least one view maintenance rule further cause the
system at least to:

apply at least one view maintenance rule based on pre-

existing data.

15. The system of claim 12, wherein the at least one view
maintenance rule comprises an insert rule selected from a
group comprising a selection rule, a projection rule, a join
rule, a union rule, and a semi-join rule.

16. The system of claim 12, wherein the at least one view
maintenance rule comprises a delete rule selected from a
group comprising a selection rule, a projection rule, a join
rule, a union rule, and a semi-join rule.

17. The system of claim 12, wherein the memory further
bears instructions that, upon execution by the processor,
cause the system at least to:

select an optimization level.

18. The system of claim 17, wherein the instructions that,
upon execution by the processor, cause the system at least to
apply at least one view maintenance rule further cause the
system at least to:

apply a version of the view maintenance rule correspond-

ing to the optimization level.

19. The system of claim 17, wherein the instructions that,
upon execution by the processor, cause the system at least to
apply an optimization level further cause the system at least
to:

select the optimization level from among a plurality of

optimization levels, the plurality of optimization levels
requiring differing application data or relational data-
base data when utilizing the incremental view mainte-
nance.

20. The system of claim 19, wherein the plurality of
optimization levels comprise:

a traditional view maintenance level;

an insert/delete/update compatible level;

an insert/delete compatible level; and

a modification requests only level.

21. A computer readable storage device bearing instruc-
tions for providing data services to an application, that,
when executed on a computer, cause the computer to per-
form functions comprising:

receiving application data modifications that modify

instances of the application, wherein the application
data modifications are expressed according to an appli-
cation schema; and

utilizing incremental view maintenance to translate the

application data modifications into relational database
modifications expressed according to a database
schema for updating a database, utilizing incremental
view maintenance comprises:
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generating a dependency graph based on a set of
changed materialized entity instances in the incre-
mental view maintenance, wherein a node of the
dependency graph represents an operation on a table
of the relational database of a set of operations, and
an edge in the dependency graph indicates that there
is a dependency between two nodes connected by the
edge, a dependency indicating that a first operation
on the table relies on a result of having already
performed a second operation;

order the set of operations based on the dependency
graph; and

ordering the set of operations based on the dependency

graph; and

applying at least one view maintenance rule that specifies

a view operator, and

given the application data modifications, produces the

relational database modifications.

22. The computer readable storage device of claim 21,
wherein receiving application data modifications comprises:

extracting the application data from a client computer

cache.

23. The computer readable storage device of claim 21,
further bearing instructions that, when executed on the
computer, cause the computer to perform functions com-
prising:

updating the relational database with the relational data-

base modifications.

24. The computer readable storage device of claim 21,
wherein applying at least one view maintenance rule further
comprises:

applying the at least one view maintenance rule based on

pre-existing data.
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25. The computer readable storage device of claim 21,
wherein the at least one view maintenance rule comprises an
insert rule selected from a group comprising a selection rule,
a projection rule, a join rule, a union rule, and a semi-join
rule.

26. The computer readable storage device of claim 21,
wherein the at least one view maintenance rule comprises a
delete rule selected from a group comprising a selection rule,
a projection rule, a join rule, a union rule, and a semi-join
rule.

27. The computer readable storage device of claim 21,
further bearing instructions that, when executed on the
computer, cause the computer to perform functions com-
prising:

selecting an optimization level.

28. The computer readable storage device of claim 27,
wherein applying at least one view maintenance rule com-
prises:

applying a version of the view maintenance rule corre-

sponding to the optimization level.

29. The computer readable storage device of claim 27,
wherein selecting the optimization level comprises:

selecting the optimization level from among a plurality of

optimization levels, the optimization levels requiring
differing application data or relational database data
when utilizing the incremental view maintenance.

30. The computer readable storage device of claim 29,
wherein the plurality of optimization levels comprise:

a traditional view maintenance level;

an insert/delete/update compatible level;

an insert/delete compatible level; and

a modification requests only level.

#* #* #* #* #*



